8 research outputs found

    ANIMAL MODELS FOR THE STUDY OF LEISHMANIASIS IMMUNOLOGY

    Get PDF
    Leishmaniasis remains a major public health problem worldwide and is classified as Category I by the TDR/WHO, mainly due to the absence of control. Many experimental models like rodents, dogs and monkeys have been developed, each with specific features, in order to characterize the immune response to Leishmania species, but none reproduces the pathology observed in human disease. Conflicting data may arise in part because different parasite strains or species are being examined, different tissue targets (mice footpad, ear, or base of tail) are being infected, and different numbers (“low” 1×102 and “high” 1×106) of metacyclic promastigotes have been inoculated. Recently, new approaches have been proposed to provide more meaningful data regarding the host response and pathogenesis that parallels human disease. The use of sand fly saliva and low numbers of parasites in experimental infections has led to mimic natural transmission and find new molecules and immune mechanisms which should be considered when designing vaccines and control strategies. Moreover, the use of wild rodents as experimental models has been proposed as a good alternative for studying the host-pathogen relationships and for testing candidate vaccines. To date, using natural reservoirs to study Leishmania infection has been challenging because immunologic reagents for use in wild rodents are lacking. This review discusses the principal immunological findings against Leishmania infection in different animal models highlighting the importance of using experimental conditions similar to natural transmission and reservoir species as experimental models to study the immunopathology of the disease

    Interferon-gamma is required for the late but not early control of Leishmania amazonensis infection in C57Bl/6 mice

    No full text
    The critical role of interferon-gamma (IFN-g) in the resistance of C57Bl/6 mice to Leishmania major is widely established but its role in the relative resistance of these animals to L. amazonensis infection is still not clear. In this work we use C57Bl/6 mice congenitally deficient in the IFN-g gene (IFN-g KO) to address this issue. We found that IFN-g KO mice were as resistant as their wild-type (WT) counterparts at least during the first two months of infection. Afterwards, whereas WT mice maintained lesion growth under control, IFN-g KO mice developed devastating lesions. At day 97 of infection, their lesions were 9-fold larger than WT controls, concomitant with an increased parasite burden. At this stage, lesion-draining cells from IFN-g KO mice had impaired capacity to produce interleukin-12 (IL-12) and tumour necrosis factor-a in response to parasite antigens whereas IL-4 was slightly increased in comparison to infected WT mice. Together, these results show that IFN-g is not critical for the initial control of L. amazonensis infection in C57Bl/6 mice, but is essencial for the developmente of a protective Th1 type immune response in the later stages

    Immune response to Leishmania (Leishmania) chagasi infection is reduced in malnourished BALB/c mice

    No full text
    Protein-energy malnutrition and micronutrient deficiencies may down-regulate immune response and increase morbidity and mortality due to infection. In this study, a murine model was used to study the effects of protein, iron and zinc deficiencies on the immune response to Leishmania (Leishmania) chagasi infection. Mice were initially fed a standard diet or with a diet containing 3% casein but deficient in zinc and iron. After malnutrition was established, mice were inoculated with L. chagasiand sacrificed four weeks later in order to evaluate liver and spleen parasite loads and serum biochemical parameters. Significant decreases in liver and spleen weight, an increase in the parasite loads in these organs and decreases in serum protein and glucose concentrations in malnourished animals were observed. Furthermore, the production of interferon-gamma by spleen cells from infected malnourished mice stimulated by Leishmaniaantigen was significantly lower compared with that in control diet mice. These data suggest that malnutrition alters the immune response to L. chagasiinfection in the BALB/c model and, in association with the effects on biochemical and anatomical parameters of the host, favored increases in the parasite loads in the spleens and livers of these animals
    corecore