21,202 research outputs found

    Charging Interacting Rotating Black Holes in Heterotic String Theory

    Full text link
    We present a formulation of the stationary bosonic string sector of the whole toroidally compactified effective field theory of the heterotic string as a double Ernst system which, in the framework of General Relativity describes, in particular, a pair of interacting spinning black holes; however, in the framework of low--energy string theory the double Ernst system can be particularly interpreted as the rotating field configuration of two interacting sources of black hole type coupled to dilaton and Kalb--Ramond fields. We clarify the rotating character of the BtϕB_{t\phi}--component of the antisymmetric tensor field of Kalb--Ramond and discuss on its possible torsion nature. We also recall the fact that the double Ernst system possesses a discrete symmetry which is used to relate physically different string vacua. Therefore we apply the normalized Harrison transformation (a charging symmetry which acts on the target space of the low--energy heterotic string theory preserving the asymptotics of the transformed fields and endowing them with multiple electromagnetic charges) on a generic solution of the double Ernst system and compute the generated field configurations for the 4D effective field theory of the heterotic string. This transformation generates the U(1)nU(1)^n vector field content of the whole low--energy heterotic string spectrum and gives rise to a pair of interacting rotating black holes endowed with dilaton, Kalb--Ramond and multiple electromagnetic fields where the charge vectors are orthogonal to each other.Comment: 15 pages in latex, revised versio

    Coaxial Atomic Force Microscope Tweezers

    Get PDF
    We demonstrate coaxial atomic force microscope (AFM) tweezers that can trap and place small objects using dielectrophoresis (DEP). An attractive force is generated at the tip of a coaxial AFM probe by applying a radio frequency voltage between the center conductor and a grounded shield; the origin of the force is found to be DEP by measuring the pull-off force vs. applied voltage. We show that the coaxial AFM tweezers (CAT) can perform three dimensional assembly by picking up a specified silica microsphere, imaging with the microsphere at the end of the tip, and placing it at a target destination.Comment: 9 pages, 3 figures, in review at Applied Physics Letter

    Strong flavour changing effective operator contributions to single top quark production

    Full text link
    We study the effects of dimension six effective operators on the production of single top quarks at the LHC. The operator set considered includes terms with effective gluon interactions and four-fermion terms. Analytic expressions for the several partonic cross sections of single top production will be presented, as well as the results of their integration on the parton density functions.Comment: 20 pages, 7 fig

    Genomics clarifies taxonomic boundaries in a difficult species complex.

    Get PDF
    Efforts to taxonomically delineate species are often confounded with conflicting information and subjective interpretation. Advances in genomic methods have resulted in a new approach to taxonomic identification that stands to greatly reduce much of this conflict. This approach is ideal for species complexes, where divergence times are recent (evolutionarily) and lineages less well defined. The California Roach/Hitch fish species complex is an excellent example, experiencing a convoluted geologic history, diverse habitats, conflicting species designations and potential admixture between species. Here we use this fish complex to illustrate how genomics can be used to better clarify and assign taxonomic categories. We performed restriction-site associated DNA (RAD) sequencing on 255 Roach and Hitch samples collected throughout California to discover and genotype thousands of single nucleotide polymorphism (SNPs). Data were then used in hierarchical principal component, admixture, and FST analyses to provide results that consistently resolved a number of ambiguities and provided novel insights across a range of taxonomic levels. At the highest level, our results show that the CA Roach/Hitch complex should be considered five species split into two genera (4 + 1) as opposed to two species from distinct genera (1 +1). Subsequent levels revealed multiple subspecies and distinct population segments within identified species. At the lowest level, our results indicate Roach from a large coastal river are not native but instead introduced from a nearby river. Overall, this study provides a clear demonstration of the power of genomic methods for informing taxonomy and serves as a model for future studies wishing to decipher difficult species questions. By allowing for systematic identification across multiple scales, taxonomic structure can then be tied to historical and contemporary ecological, geographic or anthropogenic factors

    Induced inflation from a 5D purely kinetic scalar field formalism on warped product spaces

    Full text link
    Considering a separable and purely kinetic 5D scalar field on a warped product metric background we propose a new and more general approach for inducing 4D scalar potentials on a 4D constant foliation of the 5D space-time. We obtain an induced potential for a true 4D scalar field instead of a potential for an effective 4D scalar field. In this formalism we can recover the usual 4D inflationary formalism with a geometrically induced inflationary potential. In addition the quantum confinement of the inflaton modes is obtained naturally from the model for at least a class of warping factors. Besides the 4D inflationary physics that results of this formalism is independent of the 4D-hypersurface chosen.Comment: 8 pages Accepted for publication in European Physical Journal

    Single Vectorlike Quark Production at the LHC

    Full text link
    A gluon resonance G of mass below 1 TeV could be the origin of the t\bar{t} forward-backward asymmetry observed at the Tevatron provided that new decay modes G->\bar{q}Q, with q a standard quark and Q its massive excitation, make G broad enough. We consider all the different cases, with q the top, the bottom or a light quark and dominant decay modes Q->Wq' or Q->Zq. We show that current experimental searches are unable to probe the model, but that minimal departures from these analyses can explore a large region of its parameter space for the current LHC luminosity. This includes the challenging case with the new quarks decaying mostly into light quark flavors. In some channels not only the heavy quark but also the massive gluon can be reconstructed, which would stablish the origin of the t\bar{t} asymmetry. Similar analyses can be applied to more general models with new massive gluons and vectorlike quarks.Comment: 17 pages, 8 figures. Version 2: references adde

    Free energy and vibrational entropy difference between ordered and disordered Ni3Al

    Get PDF
    We have calculated free energy and vibrational entropy differences in Ni3Al between its equilibrium ordered structure and a disordered fcc solid solution. The free energy and entropy differences were calculated using the method of adiabatic switching in a molecular-dynamics formalism. The path chosen for the free-energy calculations directly connects the disordered with the ordered state. The atomic interactions are described by embedded-atom-method potentials. We find that the vibrational entropy difference increases with temperature from 0.14kB/atom at 300 K to 0.22kB/atom at 1200 K. We have calculated the density of states (DOS) of the disordered phase from the Fourier transform of the velocity-velocity autocorrelation function. The disordered DOS looks more like a broadened version of the ordered DOS. Analysis of the partial density of states shows that the Al atoms vibrations are most affected by the compositional disorder. The phonon partial spectral intensities along the 〈100〉 direction show that the vibrational spectrum of the disordered phase contains intensities at optical mode frequencies of the ordered alloy. We find that the volume difference between the ordered and disordered phases plays the most crucial role in the magnitude of the vibrational entropy difference. If the lattice constant of the two phases is set to the same value, the vibrational entropy difference decreases to zero
    corecore