19,346 research outputs found

    Towards the quantization of the non-relativistic D2-brane in the Pure Spinor Formalism

    Full text link
    An attempt is made to apply the pure spinor formalism to the non-relativistic IIA D2-brane. The fermionic constraints corresponding to the rescaled fermionic coordinates are given. Two commuting spinor fields are introduced, each one corresponding to a fermionic constraint. A BRST charge is constructed via the ansatz proposed by N. Berkovits. The nilpotency of the BRST charge leads to a set of constraints for the two spinor fields including pure spinor constraints. A novel non-trivial solution is given for one of the spinor fields which can be written as a sum of two pure spinors.Comment: 23 pages in latex, no figures; discussion added, some typos corrected, more references adde

    Top effective operators at the ILC

    Get PDF
    We investigate the effect of top trilinear operators in t tbar production at the ILC. We find that the sensitivity to these operators largely surpasses the one achievable by the LHC either in neutral or charged current processes, allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy of 500 GeV. We show how the use of beam polarisation and an eventual energy upgrade to 1 TeV allow to disentangle all effective operator contributions to the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE

    Top effective operators at the ILC

    Get PDF
    We investigate the effect of top trilinear operators in t tbar production at the ILC. We find that the sensitivity to these operators largely surpasses the one achievable by the LHC either in neutral or charged current processes, allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy of 500 GeV. We show how the use of beam polarisation and an eventual energy upgrade to 1 TeV allow to disentangle all effective operator contributions to the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE

    Shedding light on the ttˉt \bar t asymmetry: the photon handle

    Get PDF
    We investigate a charge asymmetry in ttˉγt \bar t \gamma production at the LHC that provides complementary information to the measured asymmetries in ttˉt \bar t production. We estimate the experimental uncertainty in its measurement at the LHC with 8 and 14 TeV. For new physics models that simultaneously reproduce the asymmetry excess in ttˉt \bar t at the Tevatron and the SM-like asymmetry at the LHC, the measurement in ttˉγt \bar t \gamma at the LHC could exhibit significant deviations with respect to the SM prediction.Comment: LaTeX 15 page

    Free energy and vibrational entropy difference between ordered and disordered Ni3Al

    Get PDF
    We have calculated free energy and vibrational entropy differences in Ni3Al between its equilibrium ordered structure and a disordered fcc solid solution. The free energy and entropy differences were calculated using the method of adiabatic switching in a molecular-dynamics formalism. The path chosen for the free-energy calculations directly connects the disordered with the ordered state. The atomic interactions are described by embedded-atom-method potentials. We find that the vibrational entropy difference increases with temperature from 0.14kB/atom at 300 K to 0.22kB/atom at 1200 K. We have calculated the density of states (DOS) of the disordered phase from the Fourier transform of the velocity-velocity autocorrelation function. The disordered DOS looks more like a broadened version of the ordered DOS. Analysis of the partial density of states shows that the Al atoms vibrations are most affected by the compositional disorder. The phonon partial spectral intensities along the 〈100〉 direction show that the vibrational spectrum of the disordered phase contains intensities at optical mode frequencies of the ordered alloy. We find that the volume difference between the ordered and disordered phases plays the most crucial role in the magnitude of the vibrational entropy difference. If the lattice constant of the two phases is set to the same value, the vibrational entropy difference decreases to zero

    Constraints on Mass Spectrum of Fourth Generation Fermions and Higgs Bosons

    Full text link
    We reanalyze constraints on the mass spectrum of the chiral fourth generation fermions and the Higgs bosons for the standard model (SM4) and the two Higgs doublet model (THDM). We find that the Higgs mass in the SM4 should be larger than roughly the fourth generation up-type quark mass, while the light CP even Higgs mass in the THDM can be smaller. Various mass spectra of the fourth generation fermions and the Higgs bosons are allowed. The phenomenology of the fourth generation models is still rich.Comment: 15 pages, 16 figures; some points clarified, references added, to appear in Phys.Rev.
    • …
    corecore