4,523 research outputs found
Initial value representation for the SU(n) semiclassical propagator
The semiclassical propagator in the representation of SU(n) coherent states
is characterized by isolated classical trajectories subjected to boundary
conditions in a doubled phase space. In this paper we recast this expression in
terms of an integral over a set of initial-valued trajectories. These
trajectories are monitored by a filter that collects only the appropriate
contributions to the semiclassical approximation. This framework is suitable
for the study of bosonic dynamics in n modes with fixed total number of
particles. We exemplify the method for a Bose-Einstein condensate trapped in a
triple-well potential, providing a detailed discussion on the accuracy and
efficiency of the procedure.Comment: 24 pages, 6 figure
Semiclassical Propagation of Wavepackets with Real and Complex Trajectories
We consider a semiclassical approximation for the time evolution of an
originally gaussian wave packet in terms of complex trajectories. We also
derive additional approximations replacing the complex trajectories by real
ones. These yield three different semiclassical formulae involving different
real trajectories. One of these formulae is Heller's thawed gaussian
approximation. The other approximations are non-gaussian and may involve
several trajectories determined by mixed initial-final conditions. These
different formulae are tested for the cases of scattering by a hard wall,
scattering by an attractive gaussian potential, and bound motion in a quartic
oscillator. The formula with complex trajectories gives good results in all
cases. The non-gaussian approximations with real trajectories work well in some
cases, whereas the thawed gaussian works only in very simple situations.Comment: revised text, 24 pages, 6 figure
Imaginary Phases in Two-Level Model with Spontaneous Decay
We study a two-level model coupled to the electromagnetic vacuum and to an
external classic electric field with fixed frequency. The amplitude of the
external electric field is supposed to vary very slow in time. Garrison and
Wright [{\it Phys. Lett.} {\bf A128} (1988) 177] used the non-hermitian
Hamiltonian approach to study the adiabatic limit of this model and obtained
that the probability of this two-level system to be in its upper level has an
imaginary geometric phase. Using the master equation for describing the time
evolution of the two-level system we obtain that the imaginary phase due to
dissipative effects is time dependent, in opposition to Garrison and Wright
result. The present results show that the non-hermitian hamiltonian method
should not be used to discuss the nature of the imaginary phases in open
systems.Comment: 11 pages, new version, to appear in J. Phys.
Semiclassical coherent state propagator for systems with spin
We derive the semiclassical limit of the coherent state propagator for
systems with two degrees of freedom of which one degree of freedom is canonical
and the other a spin. Systems in this category include those involving
spin-orbit interactions and the Jaynes-Cummings model in which a single
electromagnetic mode interacts with many independent two-level atoms. We
construct a path integral representation for the propagator of such systems and
derive its semiclassical limit. As special cases we consider separable systems,
the limit of very large spins and the case of spin 1/2.Comment: 19 pages, no figure
Dados climatológicos: Estação de Pacajus, 2000.
Para a pesquisa agropecuária, os dados coletados em estações climatológicas são de suma importância, uma vez que possibilitam o monitoramento do clima, bem como o leventamento dos seus efeitos sobre pragas e doenças nas culturas, a estimativa da evapotranspiração, do volume e dos turnos de irrigação, dentre muitas outras finalidades básicas.bitstream/CNPAT-2010/8998/1/Ba-024.pd
Can lightning be a noise source for a spherical gravitational wave antenna?
The detection of gravitational waves is a very active research field at the
moment. In Brazil the gravitational wave detector is called Mario SCHENBERG.
Due to its high sensitivity it is necessary to model mathematically all known
noise sources so that digital filters can be developed that maximize the
signal-to-noise ratio. One of the noise sources that must be considered are the
disturbances caused by electromagnetic pulses due to lightning close to the
experiment. Such disturbances may influence the vibrations of the antenna's
normal modes and mask possible gravitational wave signals. In this work we
model the interaction between lightning and SCHENBERG antenna and calculate the
intensity of the noise due to a close lightning stroke in the detected signal.
We find that the noise generated does not disturb the experiment significantly.Comment: 5 pages, 6 figure
Response of the Brazilian gravitational wave detector to signals from a black hole ringdown
It is assumed that a black hole can be disturbed in such a way that a
ringdown gravitational wave would be generated. This ringdown waveform is well
understood and is modelled as an exponentially damped sinusoid. In this work we
use this kind of waveform to study the performance of the SCHENBERG
gravitational wave detector. This first realistic simulation will help us to
develop strategies for the signal analysis of this Brazilian detector. We
calculated the signal-to-noise ratio as a function of frequency for the
simulated signals and obtained results that show that SCHENBERG is expected to
be sensitive enough to detect this kind of signal up to a distance of .Comment: 5 pages, 4 figures, Amaldi 5 Conference Proceedings contribution.
Submitted to Class. Quantum Gra
- …