2,033 research outputs found

    3C 286: a bright, compact, stable, and highly polarized calibrator for millimeter-wavelength observations

    Full text link
    (Context.) A number of millimeter and submillimeter facilities with linear polarization observing capabilities have started operating during last years. These facilities, as well as other previous millimeter telescopes and interferometers, require bright and stable linear polarization calibrators to calibrate new instruments and to monitor their instrumental polarization. The current limited number of adequate calibrators implies difficulties in the acquisition of these calibration observations. (Aims.) Looking for additional linear polarization calibrators in the millimeter spectral range, in mid-2006 we started monitoring 3C 286, a standard and highly stable polarization calibrator for radio observations. (Methods.) Here we present the 3 and 1 mm monitoring observations obtained between September 2006 and January 2012 with the XPOL polarimeter on the IRAM 30 m Millimeter Telescope. (Results.) Our observations show that 3C 286 is a bright source of constant total flux with 3 mm flux density S_3mm = (0.91 \pm 0.02) Jy. The 3mm linear polarization degree (p_3mm =[13.5\pm0.3]%) and polarization angle (chi_3mm =[37.3\pm0.8]deg.,expressed in the equatorial coordinate system) are also constant during the time span of our observations. Although with poorer time sampling and signal-to-noise ratio, our 1 mm observations of 3C 286 are also reproduced by a constant source of 1 mm flux density (S_1mm = [0.30 \pm 0.03] Jy), polarization fraction (p_1mm = [14.4 \pm 1.8] %), and polarization angle (chi_1mm = [33.1 \pm 5.7]deg.). (Conclusions.) This, together with the previously known compact structure of 3C 286 -extended by ~3.5" in the sky- allow us to propose 3C 286 as a new calibrator for both single dish and interferometric polarization observations at 3 mm, and possibly at shorter wavelengths.Comment: Accepted for publication in A&A. 7 pages, 4 figures, 8 tables. Updated data sets with regard to previous version. New discussion about multi frequency properties of the source. Section 3.3, Figures 3 and 4, and Tables 7 and 8 are ne

    The First Simultaneous 3.5 and 1.3mm Polarimetric Survey of Active Galactic Nuclei in the Northern Sky

    Full text link
    Short millimeter observations of radio-loud AGN offer the opportunity to study the physics of their inner relativistic jets, from where the bulk millimeter emission is radiated. Millimeter jets are significantly less affected by Faraday rotation and depolarization than in radio. Also, the millimeter emission is dominated by the innermost jet regions, that are invisible in radio owing to synchrotron opacity. We present the first dual frequency simultaneous 86GHz and 229GHz polarimetric survey of all four Stokes parameters of a large sample of 211 radio loud active galactic nuclei, designed to be flux limited at 1Jy at 86GHz. The observations were most of them made in mid August 2010 using the XPOL polarimeter on the IRAM 30 m millimeter radio telescope. Linear polarization detections above 3 sigma median level of ~1.0% are reported for 183 sources at 86GHz, and for 23 sources at 229GHz, where the median 3 sigma level is ~6.0%. We show a clear excess of the linear polarization degree detected at 229GHz with regard to that at 86GHz by a factor of ~1.6, thus implying a progressively better ordered magnetic field for blazar jet regions located progressively upstream in the jet. We show that the linear polarization angle, both at 86 and 229GHz, and the jet structural position angle for both quasars and BL Lacs do not show a clear preference to align in either parallel or perpendicular directions. Our variability study with regard to the 86GHz data from our previous survey points out a large degree variation of total flux and linear polarization in time scales of years by median factors of ~1.5 in total flux, and ~1.7 in linear polarization degree -maximum variations by factors up to 6.3, and ~5, respectively-, with 86% of sources showing linear polarization angles evenly distributed with regard to our previous measurements.Comment: Submitted for Publication in Astronomy & Astrophysics. 14 pages (including 2 tables and 18 figures

    Fintech and sustainability: Do they affect each other?

    Get PDF
    Current concerns about environmental issues have led to many new trends in technology and financial management. Within this context of digital transformation and sustainable finance, Fintech has emerged as an alternative to traditional financial institutions. This paper, through a literature review and case study approach, analyzes the relationship between Fintech and sustain-ability, and the different areas of collaboration between Fintech and sustainable finance, from both a theoretical and descriptive perspective, while giving specific examples of current technological platforms. Additionally, in this paper, two Fintech initiatives (Clarity AI and Pensumo) are described, as well as several proposals to improve the detection of greenwashing and other deceptive behavior by firms. The results lead to the conclusion that sustainable finance and Fintech have many aspects in common, and that Fintech can make financial businesses more sustainable overall by promoting green finance. Furthermore, this paper highlights the importance of European and global regulation, mainly from the perspective of consumer protection

    Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S

    Get PDF
    Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies. To date, arsenic and selenium biomineralization in bacteria were studied separately. In this study, the anaerobic metabolism of As and Se in Shewanella sp. O23S was investigated separately and mixed, with an emphasis put on the biomineralization products of this process. Multiple analytical techniques including ICP-MS, TEM-EDS, XRD, Micro-Raman, spectmphotometry and surface charge (zeta potential) were employed. Shewanella sp. O23S is capable of reducing selenate (SeO42-) and selenite (SeO32-) to red Se(-S)(0), and arsenate (AsO43-) to arsenite (AsO33-). The release of H2S from cysteine led to the precipitation of AsS minerals: nanorod AsS and granular As2S3. When As and Se oxyanions were mixed, both As-S and Se(-S)(0) biominerals were synthesized. All biominerals were extracellular, amorphous and presented a negative surface charge (-24 to -38 mV). Kinetic analysis indicated the following reduction yields: SeO32- (90%), AsO43- (60%), and SeO42- (<10%). The mix of SeO32- with AsO43- led to a decrease in As removal to 30%, while Se reduction yield was unaffected (88%). Interestingly, SeO42- incubated with AsO43- boosted the Se removal (71%). The exclusive extracellular formation of As and Se biominerals might indicate an extracellular respiratory process characteristic of various Shewanella species and strains. This is the first study documenting a complex interplay between As and Se oxyanions: selenite decreased arsenate reduction, whereas arsenate stimulated selenate reduction. Further investigation needs to clarify whether Shewanella sp. O23S employs multi-substrate respiratory enzymes or separate, high affinity enzymes for As and Se oxyanion respiration.National Science Centre, Poland 2017/26/D/NZ1/00408Plan de Recuperacion, Transformacion y Resiliencia, through Universidad de Oviedo MU-21-UP2021-030 32892642Spanish Government European Commission RTI2018-099565-B-I00 PCI2019-111927-2Junta de Andalucia RNM-179University of Granada UCE-PP2016-05National Research, Development & Innovation Office (NRDIO) - Hungary NKFIH-471-3/202 European UnionNextGeneration EU, Ministerio de Universidade

    The redshift and broad band spectral energy distribution of NRAO 150

    Full text link
    Context. NRAO 150 is one of the brightest radio and mm AGN sources on the northern sky. It has been revealed as an interesting source where to study extreme relativistic jet phenomena. However, its cosmological distance has not been reported so far, because of its optical faintness produced by strong Galactic extinction. Aims. Aiming at measuring the redshift of NRAO 150, and hence to start making possible quantitative studies from the source. Methods. We have conducted spectroscopic and photometric observations of the source in the near-IR, as well as in the optical. Results. All such observations have been successful in detecting the source. The near-IR spectroscopic observations reveal strong Hα\alpha and Hβ\beta emission lines from which the cosmological redshift of NRAO 150 (z=1.517±0.002z=1.517\pm0.002) has been determined for the first time. We classify the source as a flat-spectrum radio-loud quasar, for which we estimate a large super-massive black-hole mass ∼5×109M⊙\sim5\times 10^{9} \mathrm{M_\odot}. After extinction correction, the new near-IR and optical data have revealed a high-luminosity continuum-emission excess in the optical (peaking at ∼2000\sim2000\,\AA, rest frame) that we attribute to thermal emission from the accretion disk for which we estimate a high accretion rate, ∼30\sim30\,% of the Eddington limit. Conclusions. Comparison of these source properties, and its broad-band spectral-energy distribution, with those of Fermi blazars allow us to predict that NRAO 150 is among the most powerful blazars, and hence a high luminosity -although not detected yet- γ\gamma-ray emitter.Comment: 8 pages, 4 figure

    The milliarcsecond-scale jet of PKS 0735+178 during quiescence

    Get PDF
    We present polarimetric 5 GHz to 43 GHz VLBI observations of the BL Lacertae object PKS 0735+178, spanning March 1996 to May 2000. Comparison with previous and later observations suggests that the overall kinematic and structural properties of the jet are greatly influenced by its activity. Time intervals of enhanced activity, as reported before 1993 and after 2000 by other studies, are followed by highly superluminal motion along a rectilinear jet. In contrast the less active state in which we performed our observations, shows subluminal or slow superluminal jet features propagating through a twisted jet with two sharp bends of about 90 deg. within the innermost three-milliarcsecond jet structure. Proper motion estimates from the data presented here allow us to constrain the jet viewing angle to values < 9 deg., and the bulk Lorentz factor to be between 2 and 4.Comment: 11 pages, 12 figures. Accepted for publication in A&

    Evolutionary 3D Image Segmentation of Curve Epithelial Tissues of Drosophila melanogaster

    Get PDF
    Analysing biological images coming from the microscope is challenging; not only is it complex to acquire the images, but also the three-dimensional shapes found on them. Thus, using automatic approaches that could learn and embrace that variance would be highly interesting for the field. Here, we use an evolutionary algorithm to obtain the 3D cell shape of curve epithelial tissues. Our approach is based on the application of a 3D segmentation algorithm called LimeSeg, which is a segmentation software that uses a particle-based active contour method. This program needs the fine-tuning of some hyperparameters that could present a long number of combinations, with the selection of the best parametrisation being highly time-consuming. Our evolutionary algorithm automatically selects the best possible parametrisation with which it can perform an accurate and non-supervised segmentation of 3D curved epithelial tissues. This way, we combine the segmentation potential of LimeSeg and optimise the parameters selection by adding automatisation. This methodology has been applied to three datasets of confocal images from Drosophila melanogaster, where a good convergence has been observed in the evaluation of the solutions. Our experimental results confirm the proper performing of the algorithm, whose segmented images have been compared to those manually obtained for the same tissues
    • …
    corecore