10 research outputs found

    A multiscale modelling approach to understand atherosclerosis formation: A patient-specific case study in the aortic bifurcation

    Get PDF
    Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population

    A simplified method to account for wall motion in patient-specific blood flow simulations of aortic dissection : comparison with fluid-structure interaction

    No full text
    Aortic dissection (AD) is a complex and highly patient-specific vascular condition difficult to treat. Computational fluid dynamics (CFD) can aid the medical management of this pathology, yet its modelling and simulation are challenging. One aspect usually disregarded when modelling AD is the motion of the vessel wall, which has been shown to significantly impact simulation results. Fluid-structure interaction (FSI) methods are difficult to implement and are subject to assumptions regarding the mechanical properties of the vessel wall, which cannot be retrieved non-invasively. This paper presents a simplified 'moving-boundary method' (MBM) to account for the motion of the vessel wall in type-B AD CFD simulations, which can be tuned with non-invasive clinical images (e.g. 2D cine-MRI). The method is firstly validated against the 1D solution of flow through an elastic straight tube; it is then applied to a type-B AD case study and the results are compared to a state-of-the-art, full FSI simulation. Results show that the proposed method can capture the main effects due to the wall motion on the flow field: the average relative difference between flow and pressure waves obtained with the FSI and MBM simulations was less than 1.8% and 1.3%, respectively and the wall shear stress indices were found to have a similar distribution. Moreover, compared to FSI, MBM has the advantage to be less computationally expensive (requiring half of the time of an FSI simulation) and easier to implement, which are important requirements for clinical translatio

    2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)

    No full text
    International audienc

    2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)

    No full text
    International audienc
    corecore