238 research outputs found

    Ginzburg-Landau Theory for a p-Wave Sr_2RuO_4 Superconductor: Vortex Core Structure and Extended London Theory

    Full text link
    Based on a two dimensional odd-parity superconducting order parameter for Sr_2RuO_4 with p-wave symmetry, we investigate the single vortex and vortex lattice structure of the mixed phase near H_{c1}. Ginzburg-Landau calculations for a single vortex show a fourfold structure with an orientation depending on the microscopic Fermi surface properties. The corresponding extended London theory is developed to determine the vortex lattice structure and we find near H_{c1} a centered rectangular vortex lattice. As the field is increased from H_{c1} this lattice continuously deforms until a square vortex lattice is achieved. In the centered rectangular phase the field distribution, as measurable through \mu-SR experiments, exhibits a characteristic two peak structure (similar to that predicted in high temperature and borocarbide superconductors).Comment: 12 pages, 7 figure

    Josephson effect in point contacts between ''f-wave'' superconductors

    Get PDF
    A stationary Josephson effect in point contacts between triplet superconductors is analyzed theoretically for most probable models of the order parameter in UPt_{3} and Sr_{2}RuO_{4}. The consequence of misorientation of crystals in superconducting banks on this effect is considered. We show that different models for the order parameter lead to quite different current-phase dependences. For certain angles of misorientation a boundary between superconductors can generate the parallel to surface spontaneous current. In a number of cases the state with a zero Josephson current and minimum of the free energy corresponds to a spontaneous phase difference. This phase difference depends on the misorientation angle and may possess any value. We conclude that experimental investigations of the current-phase dependences of small junctions can be used for determination of the order parameter symmetry in the mentioned above superconductors.Comment: 11 pages, 8 figure

    Low-temperature structural model of hcp solid C70_{70}

    Full text link
    We report intermolecular potential-energy calculations for solid C_70{70} and determine the optimum static orientations of the molecules at low temperature; we find them to be consistent with the monoclinic structural model proposed by us in an earlier report [Solid State Commun. {\bf 105), 247 (1998)]. This model indicates that the C_5 axis of the molecule is tilted by an angle \approx18^o from the monoclinic b axis in contrast with the molecular orientation proposed by Verheijen {\it et al.} [J. Chem. Phys. {\bf 166}, 287 (1992)] where the C_5 axis is parallel to the monoclinic b axis. In this calculation we have incorporated the effective bond charge Coulomb potential together with the Lennard-Jones potential between the molecule at the origin of the monoclinic unit cell and its six nearest neighbours, three above and three below. The minimum energy configuration for the molecular orientations turns out to be at θ\theta=18^o, ϕ\phi=8^o, and ψ\psi=5^o, where θ\theta, ϕ\phi, and ψ\psi define the molecular orientations.Comment: ReVTeX (4 pages) + 2 PostScript figure

    Half-quantum vortex and d-soliton in Sr2_2RuO4_4

    Full text link
    Assuming that the superconductivity in Sr2_2RuO4_4 is described by a planar p-wave order parameter, we consider possible topological defects in Sr2_2RuO4_4. In particular, it is shown that both of the d^{\hat d}-soliton and half-quantum vortex can be created in the presence of the magnetic field parallel to the aa-bb plane. We discuss how one can detect the d^{\hat d}-soliton and half-quantum vortex experimentally.Comment: 8 pages, 3 figure

    Identifying the pairing symmetry in the Sr2RuO4 superconductor

    Full text link
    We have analyzed heat capacity and thermal conductivity measurements of Sr2RuO4 in the normal and superconducting state and come to the conclusion that an order parameter with nodal lines on the Fermi surface is required to account for the observed low-temperature behavior. A gapped order parameter is inconsistent with the reported thermodynamic and transport data. Guided by a strongly peaked dynamical susceptibility along the diagonals of the Brillouin zone in neutron scattering data, we suggest a spin-fluctuation mechanism that would favor the pairing state with the gap maxima along the zone diagonals (such as for a d_{xy} gap). The most plausible candidates are an odd parity, spin-triplet, f-wave pairing state, or an even parity, spin-singlet, d-wave state. Based on our analysis of possible pairing functions we propose measurements of the ultrasound attenuation and thermal conductivity in the magnetic field to further constrain the list of possible pairing states.Comment: 7 pages, 5 figures; updated list of references and extended introduction; to appear in Phys. Rev. B (Oct. 2000

    Sound localization with bilateral bone conduction devices

    Get PDF
    Purpose To investigate sound localization in patients bilaterally fitted with bone conduction devices (BCDs). Additionally, clinically applicable methods to improve localization accuracy were explored. Methods Fifteen adults with bilaterally fitted percutaneous BCDs were included. At baseline, sound localization, (un)aided pure-tone thresholds, device use, speech, spatial and qualities of hearing scale (SSQ) and York hearing-related quality of life (YHRQL) questionnaire were measured. Settings to optimize sound localizing were added to the BCDs. At 1 month, sound localization was assessed again and localization was practiced with a series of sounds with visual feedback. At 3 months, localization performance, device use and questionnaire scores were determined again. Results At baseline, one patient with congenital hearing loss demonstrated near excellent localization performance and four other patients (three with congenital hearing loss) localized sounds (quite) accurately. Seven patients with acquired hearing loss were able to lateralize sounds, i.e. identify whether sounds were coming from the left or right side, but could not localize sounds accurately. Three patients (one with congenital hearing loss) could not even lateralize sounds correctly. SSQ scores were significantly higher at 3 months. Localization performance, device use and YHRQL scores were not significantly different between visits. Conclusion In this study, the majority of experienced bilateral BCD users could lateralize sounds and one third was able to localize sounds (quite) accurately. The localization performance was robust and stable over time. Although SSQ scores were increased at the last visit, optimizing device settings and a short practice session did not improve sound localization

    Mechanism of spin-triplet superconductivity in Sr2RuO4

    Full text link
    The unique Fermi surfaces and their nesting properties of Sr2RuO4 are considered. The existence of unconventional superconductivity is shown microscopically, for the first time, from the magnetic interactions (due to nesting) and the phonon-mediated interactions. The odd-parity superconductivity is favored in the α\alpha and β\beta sheets of the Fermi surface, and the various superconductivities are possible in the γ\gamma sheet. There are a number of possible odd-parity gaps, which include the gaps with nodes, the breaking of time-reversal symmetry and dz^\vec{d}\parallel \hat{z}.Comment: 4 pages, 3 figure

    Influence of gap structures to specific heat in oriented magnetic fields: Application to the orbital dependent superconductor, Sr2_2RuO4_4

    Full text link
    We discuss influence of modulation of gap function and anisotropy of Fermi velocity to field angle dependences of upper critical field, Hc2H_{c2}, and specific heat, CC, on the basis of the approximate analytic solution in the quasiclassical formalism. Using 4-fold modulation of the gap function and the Fermi velocity in the single-band model, we demonstrate field and temperature dependence of oscillatory amplitude of Hc2H_{c2} and CC. We apply the method to the effective two-band model to discuss the gap structure of Sr2_2RuO4_4, focusing on recent field angle-resolved experiments. It is shown that the gap structures with the intermediate magnitude of minima in [100][100] direction for γ\gamma band, and tiny minima of gaps in [110][110] directions for α\alpha and β\beta bands give consistent behaviors with experiments. The interplay of the above two gaps also explains the anomalous temperature dependence of in-plane Hc2H_{c2} anisotropy, where the opposite contribution from the passive αβ\alpha\beta band is pronounced near TcT_c.Comment: 7 pages, 11 figures in JPSJ forma
    corecore