9 research outputs found

    Molecular characterization of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis

    Full text link
    Background and aims: Non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) is increasing globally, but its molecular features are not well defined. We aimed to identify unique molecular traits characterising NASH-HCC compared to other HCC aetiologies. Methods: We collected 80 NASH-HCC and 125 NASH samples from 5 institutions. Expression array (n = 53 NASH-HCC; n = 74 NASH) and whole exome sequencing (n = 52 NASH-HCC) data were compared to HCCs of other aetiologies (n = 184). Three NASH-HCC mouse models were analysed by RNA-seq/expression-array (n = 20). Activin A receptor type 2A (ACVR2A) was silenced in HCC cells and proliferation assessed by colorimetric and colony formation assays. Results: Mutational profiling of NASH-HCC tumours revealed TERT promoter (56%), CTNNB1 (28%), TP53 (18%) and ACVR2A (10%) as the most frequently mutated genes. ACVR2A mutation rates were higher in NASH-HCC than in other HCC aetiologies (10% vs. 3%, p <0.05). In vitro, ACVR2A silencing prompted a significant increase in cell proliferation in HCC cells. We identified a novel mutational signature (MutSig-NASH-HCC) significantly associated with NASH-HCC (16% vs. 2% in viral/alcohol-HCC, p = 0.03). Tumour mutational burden was higher in non-cirrhotic than in cirrhotic NASH-HCCs (1.45 vs. 0.94 mutations/megabase; p <0.0017). Compared to other aetiologies of HCC, NASH-HCCs were enriched in bile and fatty acid signalling, oxidative stress and inflammation, and presented a higher fraction of Wnt/TGF-β proliferation subclass tumours (42% vs. 26%, p = 0.01) and a lower prevalence of the CTNNB1 subclass. Compared to other aetiologies, NASH-HCC showed a significantly higher prevalence of an immunosuppressive cancer field. In 3 murine models of NASH-HCC, key features of human NASH-HCC were preserved. Conclusions: NASH-HCCs display unique molecular features including higher rates of ACVR2A mutations and the presence of a newly identified mutational signature. Lay summary: The prevalence of hepatocellular carcinoma (HCC) associated with non-alcoholic steatohepatitis (NASH) is increasing globally, but its molecular traits are not well characterised. In this study, we uncovered higher rates of ACVR2A mutations (10%) - a potential tumour suppressor - and the presence of a novel mutational signature that characterises NASH-related HCC

    Positive and Negative Regulation of Poly(A) Nuclease

    Get PDF
    PAN, a yeast poly(A) nuclease, plays an important nuclear role in the posttranscriptional maturation of mRNA poly(A) tails. The activity of this enzyme is dependent on its Pan2p and Pan3p subunits, as well as the presence of poly(A)-binding protein (Pab1p). We have identified and characterized the associated network of factors controlling the maturation of mRNA poly(A) tails in yeast and defined its relevant protein-protein interactions. Pan3p, a positive regulator of PAN activity, interacts with Pab1p, thus providing substrate specificity for this nuclease. Pab1p also regulates poly(A) tail trimming by interacting with Pbp1p, a factor that appears to negatively regulate PAN. Pan3p and Pbp1p both interact with themselves and with the C terminus of Pab1p. However, the domains required for Pan3p and Pbp1p binding on Pab1p are distinct. Single amino acid changes that disrupt Pan3p interaction with Pab1p have been identified and define a binding pocket in helices 2 and 3 of Pab1p's carboxy terminus. The importance of these amino acids for Pab1p-Pan3p interaction, and poly(A) tail regulation, is underscored by experiments demonstrating that strains harboring substitutions in these residues accumulate mRNAs with long poly(A) tails in vivo

    Potensi Tanaman Pandan Laut (Pandanus Tectorius) Dan Limbah Industri Gandum Kota Cilegon Sebagai Bahan Baku Sintesis Bioetanol

    Full text link
    Pemanfaatan bioetanol (E100) sebagai campuran bahan bakar minyak dipersyaratkan minimal sebanyak 20% terhadap kebutuhan total pada Januari 2025 seperti yang tertuang dalam Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 12 Tahun 2015. Indonesia adalah negara yang memiliki banyak potensi bahan baku baru untuk pengembangan bioetanol sebagai energi terbarukan, salah satunya tanaman pandan laut (Pandanus tectorius) dan limbah industri pangan seperti industri gandum. Tanaman pandan laut banyak dijumpai di seluruh kepulauan Indonesia dan tersedia secara endemik, sedangkan limbah industri gandum tersedia di daerah industri seperti Provinsi Banten, yang selama ini belum termanfaatkan menjadi sumber bahan bakar nabati. Tujuan penelitian ini adalah mensintesis bioetanol dari daun pandan laut (Pandanus tectorius) dan limbah industri gandum. Penelitian ini diharapkan dapat memberikan kontribusi dalam meningkatkan pengetahuan yang diperlukan dalam merencanakan pembuatan bioetanol. Tahapan penelitian dimulai dari proses preparasi bahan baku, uji proksimat, gelatinisasi dan likuifaksi, pra-sakarifikasi, fermentasi, destilasi dan analisis kuantitatif menggunakan instrumen. Hasil penelitian menunjukkan daun pandan laut memiliki potensi untuk sintesis bioetanol dengan jumlah rendemen dan efisiensi tertinggi (309 mL dan 0,62 mL/g), sedangkan berdasarkan hasil analisis gas chromatography (GC), bioetanol yang memiliki kadar kemurnian tertinggi adalah dari limbah kulit ari biji gandum (bran) dengan kadar kemurnian 97,64%

    Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis.

    No full text
    BACKGROUND AND AIMS Non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) is increasing globally, but its molecular features are not well defined. We aimed to identify unique molecular traits characterising NASH-HCC compared to other HCC aetiologies. METHODS We collected 80 NASH-HCC and 125 NASH samples from 5 institutions. Expression array (n = 53 NASH-HCC; n = 74 NASH) and whole exome sequencing (n = 52 NASH-HCC) data were compared to HCCs of other aetiologies (n = 184). Three NASH-HCC mouse models were analysed by RNA-seq/expression-array (n = 20). Activin A receptor type 2A (ACVR2A) was silenced in HCC cells and proliferation assessed by colorimetric and colony formation assays. RESULTS Mutational profiling of NASH-HCC tumours revealed TERT promoter (56%), CTNNB1 (28%), TP53 (18%) and ACVR2A (10%) as the most frequently mutated genes. ACVR2A mutation rates were higher in NASH-HCC than in other HCC aetiologies (10% vs. 3%, p <0.05). In vitro, ACVR2A silencing prompted a significant increase in cell proliferation in HCC cells. We identified a novel mutational signature (MutSig-NASH-HCC) significantly associated with NASH-HCC (16% vs. 2% in viral/alcohol-HCC, p = 0.03). Tumour mutational burden was higher in non-cirrhotic than in cirrhotic NASH-HCCs (1.45 vs. 0.94 mutations/megabase; p <0.0017). Compared to other aetiologies of HCC, NASH-HCCs were enriched in bile and fatty acid signalling, oxidative stress and inflammation, and presented a higher fraction of Wnt/TGF-β proliferation subclass tumours (42% vs. 26%, p = 0.01) and a lower prevalence of the CTNNB1 subclass. Compared to other aetiologies, NASH-HCC showed a significantly higher prevalence of an immunosuppressive cancer field. In 3 murine models of NASH-HCC, key features of human NASH-HCC were preserved. CONCLUSIONS NASH-HCCs display unique molecular features including higher rates of ACVR2A mutations and the presence of a newly identified mutational signature. LAY SUMMARY The prevalence of hepatocellular carcinoma (HCC) associated with non-alcoholic steatohepatitis (NASH) is increasing globally, but its molecular traits are not well characterised. In this study, we uncovered higher rates of ACVR2A mutations (10%) - a potential tumour suppressor - and the presence of a novel mutational signature that characterises NASH-related HCC

    Uncertainty Communication Solution in Neutrosophic Key

    No full text
    corecore