18 research outputs found

    Emulsification parameters study on micelles formation from hydrophobically modified chitosan

    No full text
    A series of N,O-acylated chitosan derivatives were emulsified with different fatty acids. Hydrophobically modified chitosan derivatives were expected to exhibit self-assembly behaviour resulting in micelle formation. Several parameters of the oil-in-water emulsification process were investigated: mixing method, speed and duration, volume oil phase and addition of modifiers. Their influence on micellar Z-average diameter, size distribution and Zeta potential was analysed based on dynamic light scattering measurements. There were various relations between the hydrodynamic behaviour of chitosan derivatives, their chemical structure and the process parameters. Additionally, the obtained micelles could serve as active compound carriers because they encapsulated two model substances, namely ibuprofen and α-tocopherol

    The Importance of Reaction Conditions on the Chemical Structure of N,O-Acylated Chitosan Derivatives

    No full text
    The structure of acylated chitosan derivatives strongly determines the properties of obtained products, influencing their hydrodynamic properties and thereby their solubility or self-assembly susceptibility. In the present work, the significance of slight changes in acylation conditions on the structure and properties of the products is discussed. A series of chitosan-acylated derivatives was synthesized by varying reaction conditions in a two-step process. As reaction media, two diluted acid solutions—i.e., acetic acid and hydrochloric acid)—and two coupling systems—i.e., 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride (EDC) and N–hydroxysulfosuccinimide (EDC/NHS)—were used. The chemical structure of the derivatives was studied in detail by means of two spectroscopic methods, namely infrared and nuclear magnetic resonance spectroscopy, in order to analyze the preference of the systems towards N- or O-acylation reactions, depending on the synthesis conditions used. The results obtained from advanced 1H-13C HMQC spectra emphasized the challenge of achieving a selective acylation reaction path. Additionally, the study of the molecular weight and solution behavior of the derivatives revealed that even slight changes in their chemical structure have an important influence on their final properties. Therefore, an exact knowledge of the obtained structure of derivatives is essential to achieve reaction reproducibility and to target the application

    Antibacterial Activity of N,O-Acylated Chitosan Derivative

    No full text
    The antibacterial activity of N,O-acylated chitosan derivative with linoleic acid (CH_LA) was tested by disc and well diffusion, agar impregnation and microdilution methods against Staphylococcus aureus, Escherichia coli and Helicobacter pylori strains. Hydrophobically modified chitosan (HMC) was expected to exhibit enhanced antibacterial activity and specific mucin interactions. Although diffusion tests have not indicated the antibacterial potential of chitosan (CH) or CH_LA, the results of the microdilution method demonstrated that tested polymers significantly reduced the amount of living bacteria cells in different concentrations depending on the microorganism. Additionally, CH_LA was characterized by enhanced antibacterial activity compared to CH, which may suggest a different mechanism of interaction with S. aureus and H. pylori. Furthermore, the UV-VIS analysis revealed that the amphiphilic character of derivative led to strong CH_LA–mucin interactions. The study proved the high potential of CH_LA in antibacterial applications, especially for the gastrointestinal tract

    The effects of nano-sized carbon fillers on the physico-chemical, mechanical, and biological properties of polyester nanocomposites

    No full text
    Nanocomposites based on poly(ethylene terephthalate-ethylene dilinoleate) (PET-DLA) copolymers of different hard to soft segment ratios (40:60 and 60:40) and three different carbon nanofillers of different aspect ratios (dimensions), as 0D carbon black, 1D multiwalled carbon nanotubes, and 2D graphene, have been prepared in situ during two-stage polymerization. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the chemical structures of the obtained nanocomposites. Scanning electron microscopy (SEM) indicated very good dispersions of all carbon nanofillers in both polymer matrices. Differential scanning calorimetry (DSC) results revealed that the addition of nano-sized fillers eliminated cold crystallization of materials containing 40% hard segments in polymer matrix. We found that the high aspect ratio, 1D nano-filler (multiwalled carbon nanotubes) strongly nucleated crystallization of materials containing 60% of hard segments. This nanofiller also yielded the greatest improvement in the Young’s modulus as assessed by tensile tests, both at 24 oC and 37 oC. We did not observe reduced bacterial adhesion to nanocomposites, likely due to increased roughness. Importantly, in vitro cytocompatibility tests with L929 murine fibroblasts demonstrated cell viability and growth on all materials except those containing carbon nanotubes. Finally, both high aspect ratio nanofillers markedly improved the barrier properties of obtained nanocomposites. New materials were successfully used for manufacturing of prototype of heart assist device, with pneumatic membrane made of graphene nanocomposite.</div

    The influence of c18-fatty acids on chemical structure of chitosan derivatives and their thermal properties

    No full text
    Chitosan derivatives with a series of fatty acids (FA) have been developed using simultaneous N- and O-acylation reaction by the combination of two ways of conducting the reaction, i.e. a carbodiimide catalysis and ionic amino group protection. The chemical structure of chitosan derivatives as well as the characterization of the FA substitution degree were done by the IR spectra analysis. The correlation between the substitution of the chitosan functional groups as well as the saturation of FA and the changes of structural and thermal properties of the derivatives has been presented

    Nanoparticles Influence Lytic Phage T4-like Performance In Vitro

    No full text
    Little is known about interactions of non-filamentous, complex-structured lytic phages and free, non-ordered nanoparticles. Emerging questions about their possible bio-sanitization co-applications or predictions of possible contact effects in the environment require testing. Therefore, we revealed the influence of various nanoparticles (NPs; SiO2, TiO2-SiO2, TiO2, Fe3O4, Fe3O4-SiO2 and SiO2-Fe3O4-TiO2) on a T4-like phage. In great detail, we investigated phage plaque-forming ability, phage lytic performance, phage progeny burst times and titers by the eclipse phase determinations. Additionally, it was proved that TEM micrographs and results of NP zeta potentials (ZP) were crucial to explain the obtained microbiological data. We propose that the mere presence of the nanoparticle charge is not sufficient for the phage to attach specifically to the NPs, consequently influencing the phage performance. The zeta potential values in the NPs are of the greatest influence. The threshold values were established at ZP &lt; &minus;35 (mV) for phage tail binding, and ZP &gt; 35 (mV) for phage head binding. When NPs do not meet these requirements, phage&ndash;nanoparticle physical interaction becomes nonspecific. We also showed that NPs altered the phage lytic activity, regardless of the used NP concentration. Most of the tested nanoparticles positively influenced the phage lytic performance, except for SiO2 and Fe3O4-SiO2, with a ZP lower than &minus;35 (mV), binding with the phage infective part&mdash;the tail

    The effects of nano-sized carbon fillers on the physico-chemical, mechanical, and biological properties of polyester nanocomposites

    No full text
    <div><div><div><p>Nanocomposites based on poly(ethylene terephthalate-ethylene dilinoleate) (PET-DLA) copolymers of different hard to soft segment ratios (40:60 and 60:40) and three different carbon nanofillers of different aspect ratios (dimensions), as 0D carbon black, 1D multiwalled carbon nanotubes, and 2D graphene, have been prepared in situ during two-stage polymerization. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the chemical structures of the obtained nanocomposites. Scanning electron microscopy (SEM) indicated very good dispersions of all carbon nanofillers in both polymer matrices. Differential scanning calorimetry (DSC) results revealed that the addition of nano-sized fillers eliminated cold crystallization of materials containing 40% hard segments in polymer matrix. We found that the high aspect ratio, 1D nano-filler (multiwalled carbon nanotubes) strongly nucleated crystallization of materials containing 60% of hard segments. This nanofiller also yielded the greatest improvement in the Young’s modulus as assessed by tensile tests, both at 24 oC and 37 oC. We did not observe reduced bacterial adhesion to nanocomposites, likely due to increased roughness. Importantly, in vitro cytocompatibility tests with L929 murine fibroblasts demonstrated cell viability and growth on all materials except those containing carbon nanotubes. Finally, both high aspect ratio nanofillers markedly improved the barrier properties of obtained nanocomposites. New materials were successfully used for manufacturing of prototype of heart assist device, with pneumatic membrane made of graphene nanocomposite.</p></div></div></div
    corecore