294 research outputs found
Statistical description of tectonic motions
This report summarizes investigations regarding tectonic motions. The topics discussed include statistics of crustal deformation, Earth rotation studies, using multitaper spectrum analysis techniques applied to both space-geodetic data and conventional astrometric estimates of the Earth's polar motion, and the development, design, and installation of high-stability geodetic monuments for use with the global positioning system
Strain accumulation in the Santa Barbara Channel, 1971-1987
Geophysical evidence suggests a significant amount of north-south convergence occurs across the Santa Barbara Channel. Tectonic studies indicate a discrepancy between observed fault slip in California and the North American-Pacific plate motion. Newer plate motion models (NUVEL-1) yield a lower rate of convergence. Global Positioning System (GPS) data collected in the Santa Barbara Channel in 1987, when combined with 1971 trilateration measurements, should be sufficient to resolve the present-day convergence rate. In early 1987. from January 3 to 7, GPS data were collected at 14 sites in California and at 5 additional stations throughout North America. The data can be used to estimate the rate of crustal deformation (convergence) ocurring across the Santa Barbara Channel. The GPS baselines were computed with the Bernese 2nd generation software. A comparison was made between baseline lengths obtained with the Burnese and MIT softwares. Baseline changes from 1971 to January, 1987 (GPS-Bernese) across the Santa Barbara Channel were computed. A uniform strain model was calculated from the baseline changes. The present-day rate of convergence across the Santa Barbara Channel was determined to be 8 to 10 mm/yr. This conclusion is obtained from changes in the baseline length measured with a 1971 trilateration survey and a January, 1987, GPS survey. The rapid convergence rate, in addition to the history of large seismic events, suggests this region is a prime target for future geodetic and geophysical studies
Prediction probabilities from foreshocks
When any earthquake occurs, the possibility that it might be a foreshock increases the probability that a larger earthquake will occur nearby within the next few days. Clearly, the probability of a very large earthquake ought to be higher if the candidate foreshock were on or near a fault capable of producing that very large mainshock, especially if the fault is towards the end of its seismic cycle. We derive an expression for the probability of a major earthquake characteristic to a particular fault segment, given the occurrence of a potential foreshock near the fault. To evaluate this expression, we need: (1) the rate of background seismic activity in the area, (2) the long-term probability of a large earthquake on the fault, and (3) the rate at which foreshocks precede large earthquakes, as a function of time, magnitude, and spatial location. For this last function we assume the average properties of foreshocks to moderate earthquakes in California: (1) the rate of mainshock occurrence after foreshocks decays roughly as t^(−1), so that most foreshocks are within three days of their mainshock, (2) foreshocks and mainshocks occur within 10 km of each other, and (3) the fraction of mainshocks with foreshocks increases linearly as the magnitude threshold for foreshocks decreases, with 50% of the mainshocks having foreshocks with magnitudes within three units of the mainshock magnitude (within three days). We apply our results to the San Andreas, Hayward, San Jacinto, and Imperial faults, using the probabilities of large earthquakes from the report of the Working Group on California Earthquake Probabilities (1988). The magnitude of candidate event required to produce a 1% probability of a large earthquake on the San Andreas fault within three days ranges from a high of 5.3 for the segment in San Gorgonio Pass to a low of 3.6 for the Carrizo Plain
The complete (3-D) surface displacement field in the epicentral area of the 1999 M_W7.1 Hector Mine Earthquake, California, from space geodetic observations
We use Interferometric Synthetic Aperture Radar (InSAR) data to derive continuous maps for three orthogonal components of the co-seismic surface displacement field due to the 1999 M_w7.1 Hector Mine earthquake in southern California. Vertical and horizontal displacements are both predominantly antisymmetric with respect to the fault plane, consistent with predictions of linear elastic models of deformation for a strike-slip fault. Some deviations from symmetry apparent in the surface displacement data may result from complexity in the fault geometry
A documentary study of the felt effects of the great California earthquake of 1857
We have collected over 60 hitherto unpublished accounts of the California earthquake of January 9, 1857. We have used them, together with those already known, to estimate felt intensities and prepare an isoseismal map which roughly indicates the level of short-period ground motion experienced during this earthquake. Modified Mercalli intensities of VI to VII occurred in the modern metropolitan areas of southern California, and VI to VIII in the southern San Joaquin Valley. The intensity along the fault was IX or more. Instances of seiching, fissuring, sandblows, and hydrologic changes were reported from Sacramento to the Colorado River delta. Most reports say that shaking lasted between one and three minutes. At least two large aftershocks occurred within a week of the main event
A FLINN Station at Pinon Flat Observatory
The main objectives are: (1) To develop Pinon Flat Observatory (PFO) as a prototype 'integrated' FLINN station: one from which many types of data are collected, combined, and made available to the DOSE program to enhance studies of local and regional strains; (2) To develop the theoretical framework and methods to integrate the various types of auxiliary data which are to be collected by NASA at space-geodetic sites of the FLINN network, with the aim of learning as much as possible about the nature of earth deformation; (3) To develop procedures for the efficient and useful storage and retrieval of such auxiliary data so that they may be efficiently utilized by DOSE investigators; (4) To investigate the stability of ground monumentation now used in space-geodetic measurements, including the field testing of existing and new monument designs
Extremal Bounds on Earthquake Movement from Geodetic Data: Application to the Landers Earthquake
We present a technique to place quantifiable bounds on the moment of an earthquake from geodetic data, assuming known fault geometry. Application of this technique to the 1992 Landers earthquake shows that the moment must have been between 0.84 and 1.15 × 10^(20) Nm with 90% confidence (M 7.25 to 7.34). We also find that to satisfy the data to this same level of confidence, the slip on the fault must have exceeded 7 m in at least one location, in good agreement with field mapping of the surface rupture
Ocean Tide Loading Computation
September 15,2003 through May 15,2005 This grant funds the maintenance, updating, and distribution of programs for computing ocean tide loading, to enable the corrections for such loading to be more widely applied in space- geodetic and gravity measurements. These programs, developed under funding from the CDP and DOSE programs, incorporate the most recent global tidal models developed from Topex/Poscidon data, and also local tide models for regions around North America; the design of the algorithm and software makes it straightforward to combine local and global models
Uplift and subsidence associated with the great Aceh-Andaman earthquake of 2004
Rupture of the Sunda megathrust on 26 December 2004 produced broad regions of uplift and subsidence. We define the pivot line separating these regions as a first step in defining the lateral extent and the downdip limit of rupture during that great M_w ≈ 9.2 earthquake. In the region of the Andaman and Nicobar islands we rely exclusively on the interpretation of satellite imagery and a tidal model. At the southern limit of the great rupture we rely principally on field measurements of emerged coral microatolls. Uplift extends from the middle of Simeulue Island, Sumatra, at ~2.5°N, to Preparis Island, Myanmar (Burma), at ~14.9°N. Thus the rupture is ~1600 km long. The distance from the pivot line to the trench varies appreciably. The northern and western Andaman Islands rose, whereas the southern and eastern portion of the islands subsided. The Nicobar Islands and the west coast of Aceh province, Sumatra, subsided. Tilt at the southern end of the rupture is steep; the distance from 1.5 m of uplift to the pivot line is just 60 km. Our method of using satellite imagery to recognize changes in elevation relative to sea surface height and of using a tidal model to place quantitative bounds on coseismic uplift or subsidence is a novel approach that can be adapted to other forms of remote sensing and can be applied to other subduction zones in tropical regions
ZigBee-based Wireless Neuro-Stimulator for Improving Stroke Recovery
Stroke is a leading cause of adult disability and the second-leading cause of death in Korea. It is also the third-leading cause of death in the United States, leading to a serious demand for new interventions to improve the quality of life in stroke survivors. To this end, direct cortical stimulation using an epidural electrode has been reported with promising results in animal and human studies, showing the potential for enhancing the recovery in chronic stroke patients. For optimal results, doctors must be able to modify the stimulation pattern as frequently as needed over a period of time for a given patient. However, severe aftereffects caused by stroke limit patients' activities, making regular doctor visits for treatment difficult. This study aims to develop a prototype of a telemedicine system to enhance stroke recovery by using a ZigBeebased wireless neuro-stimulator. The ZigBee is a stable platform for many low-power wireless applications. To allow stroke patients to remotely obtain neuro-stimulation treatments from their doctors, we connected the ZigBee to the internet. The system also allows doctors to personalize treatment based on the history of the stimulation parameters. The system developed here can also be beneficial as a common platform for a wide range of brain diseases and clinical care for which electric stimulation is used
- …