27 research outputs found

    Influence of genetic factors on toluene diisocyanate-related symptoms: evidence from a cross-sectional study

    Get PDF
    Background: Toluene diisocyanate (TDI) is a highly reactive compound used in the production of, e. g., polyurethane foams and paints. TDI is known to cause respiratory symptoms and diseases. Because TDI causes symptoms in only a fraction of exposed workers, genetic factors may play a key role in disease susceptibility. Methods: Workers (N = 132) exposed to TDI and a non-exposed group ( N = 114) were analyzed for genotype (metabolising genes: CYP1A1*2A, CYP1A1*2B, GSTM1*O, GSTM3*B, GSTP1 1105V, GSTP1 A114V, GSTT1*O, MPO -463, NAT1*3, *4, *10, *11, *14, *15, NAT2*5, *6, *7, SULT1A1 R213H; immune-related genes: CCL5 -403, HLA-DQB1* 05, TNF-308, TNF-863) and symptoms of the eyes, upper and lower airways ( based on structured interviews). Results: For three polymorphisms: CYP1A1*2A, CYP1A1*2B, and TNF -308 there was a pattern consistent with interaction between genotype and TDI exposure status for the majority of symptoms investigated, although it did reach statistical significance only for some symptoms: among TDI-exposed workers, the CYP1A1 variant carriers had increased risk (CYP1A1*2A and eye symptoms: variant carriers OR 2.0 95% CI 0.68-6.1, p-value for interaction 0.048; CYP1A1*2B and wheeze: IV carriers OR = 12, 1.4-110, p-value for interaction 0.057). TDI-exposed individuals with TNF-308 A were protected against the majority of symptoms, but it did not reach statistical significance. In the non-exposed group, however, TNF -308 A carriers showed higher risk of the majority of symptoms ( eye symptoms: variant carriers OR = 2.8, 1.1-7.1, p-value for interaction 0.12; dry cough OR = 2.2, 0.69-7.2, p-value for interaction 0.036). Individuals with SULT1A1 213H had reduced risk both in the exposed and non-exposed groups. Other polymorphisms, showed associations to certain symptoms: among TDI-exposed, NAT1*10 carriers had a higher risk of eye symptoms and CCL5 -403 AG+AA as well as HLA-DQB1 *05 carriers displayed increased risk of symptoms of the lower airways. GSTM1, GSTM3 and GSTP1 only displayed effects on symptoms of the lower airways in the non-exposed group. Conclusion: Specific gene-TDI interactions for symptoms of the eyes and lower airways appear to exist. The results suggest different mechanisms for TDI- and non- TDI-related symptoms of the eyes and lower airways

    The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P4501 substrate 6-formylindolo[3,2-b]carbazole is present in humans

    No full text
    Dioxins and other polycyclic aromatic compounds formed during the combustion of waste and fossil fuels represent a risk to human health, as well as to the well being of our environment. Compounds of this nature exert carcinogenic and endocrine-disrupting effects in experimental animals by binding to the orphan aryl hydrocarbon receptor (AhR). Understanding the mechanism of action of these pollutants, as well as the physiological role(s) of the AhR, requires identification of the endogenous ligand(s) of this receptor. We reported earlier that activation of AhR by ultraviolet radiation is mediated by the chromophoric amino acid tryptophan (Trp), and we suggested that a new class of compounds derived from Trp, in particular 6-formylindolo[3,2-b]carbazole (FICZ), acts as natural high affinity ligands for this receptor. Here we describe seven new FICZ-derived indolo[3,2-b]carbazole-6-carboxylic acid metabolites and two sulfoconjugates, and we demonstrate the following. (i) FICZ is formed efficiently by photolysis of Trp upon exposure to visible light. (ii) FICZ is an exceptionally good substrate for cytochromes P450 (CYP) 1A1, 1A2, and 1B1, and its hydroxylated metabolites are remarkably good substrates for the sulfotransferases (SULTs) 1A1, 1A2, 1B1, and 1E1. Finally, (iii) sulfoconjugates of phenolic metabolites of FICZ are present in human urine. Our findings indicate that formylindolo[3,2-b]carbazols are the most potent naturally occurring activators of the AhR signaling pathway and may be the key substrates of the CYP1 and SULT1 families of enzymes. These conclusions contradict the widespread view that xenobiotic compounds are the major AhR ligands and CYP1 substrates

    NADPH Oxidase-Dependent Mechanism Explains How Arsenic and Other Oxidants Can Activate Aryl Hydrocarbon Receptor Signaling

    No full text
    The mechanisms explaining arsenic toxicity are not well understood, but physiological consequences of stimulated aryl hydrocarbon receptor (AHR) signaling both directly and through cross-talk with other pathways have been indicated. The aim of this study was to establish how arsenic interacts with AHR-mediated transcription. The human hepatoma cell line (HepG2-XRE-Luc) carrying a luciferase reporter under the control of two AHR response elements (AHREs) and immortalized human keratinocytes (HaCaT) were exposed to sodium arsenite (NaAsO<sub>2</sub>; As<sup>3+</sup>), alone or in combination with the endogenous high affinity AHR ligand 6-formylindolo­[3,2-<i>b</i>]­carbazole (FICZ). Luciferase activity, cytochrome P4501A1 (CYP1A1) activity, oxidative stress-related responses, metabolic clearance of FICZ, and NADPH oxidase (NOX) activity as well as nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent gene expression were measured. Arsenic inhibited CYP1A1 enzyme activity and reduced the metabolic clearance of FICZ. Arsenic also led to activated CYP1A1 transcription but only in cells grown in medium containing trace amounts of the endogenous ligand FICZ, pointing to an indirect mechanism of activation. Initially, arsenic caused dose-dependent inhibition of FICZ-activated AHR signaling, disturbed intracellular GSH status, and increased expression of oxidative stress-related genes. Silencing of NOX4, addition of N-acetylcystein, or pretreatment with arsenic itself attenuated the initial dose-dependent inhibition of AHR signaling. Arsenic pretreatment led to elevated GSH levels and sensitized the cells to ligand-dependent AHR signaling, while silencing of Nrf2 significantly reduced arsenic-mediated activation of the AHR. In addition, influence of NOX on AHR activation was also observed in cells treated with the SH-reactive metals cadmium, mercury, and nickel. Together, the results suggest that SH-reactive agents via a new and possibly general NOX/H<sub>2</sub>O<sub>2</sub>-dependent mechanism can interfere with the endogenous regulation of the AHR

    MDA in plasma as a biomarker of exposure to pyrolysed MDI-based polyurethane: correlations with estimated cumulated dose and genotype for N-acetylation

    No full text
    The object of this study was to investigate whether exposure of pipe-layers to thermal degradation products of diphenylmethane diisocyanate (MDI) could be assessed by analysing 4,4-methylenedianiline (MDA) in hydrolysed plasma and urine, and whether the genotype for N-acetylation affected these biomarker levels. Blood and urine samples were drawn from 30-pipe-layers who had been welding polyurethane (PUR) insulated pipes during the preceding 3 months. MDA in hydrolysed plasma and urine was determined with a gas chromatography-mass spectrometry technique, and genotype for N-acetylation was analysed with a polymerase chain reaction technique. MDA in plasma was detected in 18 of the 30 pipe-layers. Their plasma concentrations of MDA varied from 0.05 to 8.48 micrograms/l. There was a significant negative correlation between time since last welding of PUR-insulated pipes and P-MDA (rs = 0.50, P = 0.005). There was also a significant positive correlation between the estimated number of welded PUR-insulated pipes during the preceding 3 months and P-MDA (rs = 0.68, P = < 0.001). No significant association between genotype of N-acetylation and P-MDA was observed in a multiple regression analysis when adjustment was made for the estimated cumulative exposure to thermal degradation products of MDI. MDA in urine was detected in only four of the 30 pipe-layers. These four subjects had been welding PUR pipes on the same day as the sampling, or on the day before. The present results indicate the spot plasma samples analysed for MDA may give a rather good estimate of exposure to MDI during the preceding months. P-MDA, but not U-MDA, therefore seems to be a useful biomarker of long-term exposure to MDI. The individual N-acetylation capacity did not affect the plasma levels of MDA

    Quercetin, Resveratrol, and Curcumin Are Indirect Activators of the Aryl Hydrocarbon Receptor (AHR)

    No full text
    Several polyphenols have been shown to activate the aryl hydrocarbon receptor (AHR) in spite of the fact that they bind to the receptor with low affinity. The aim of this study was to investigate whether quercetin (QUE), resveratrol (RES), and curcumin (CUR) interfere with the metabolic degradation of the suggested endogenous AHR ligand 6-formylindolo­[3,2-<i>b</i>]­carbazole (FICZ) and thereby indirectly activate the AHR. Using recombinant human enzyme, we confirmed earlier reported inhibitory effects of the polyphenols on cytochrome P4501A1 (CYP1A1) activity, and inhibition of metabolic clearance of FICZ was documented in FICZ-treated immortalized human keratinocytes (HaCaT). CYP1A1 activity was induced in HaCaT cells by all three compounds, and when they were added together with FICZ, a prolonged activation was observed after a dose-dependent inhibition period. The same pattern of responses was seen at the transcriptional level as determined with a CYP1A1 reporter assay in human liver hepatoma (HepG2) cells. To test the ability of the polyphenols to activate the AHR in the absence of FICZ, the cells were treated in medium, which in contrast to commercial batches of medium did not contain background levels of FICZ. Importantly, AHR activation was only observed in the commercial medium. Taken together, these findings suggest that QUE, RES, and CUR induce CYP1A1 in an indirect manner by inhibiting the metabolic turnover of FICZ. Humans are exposed to these compounds through the diet and nutritional supplements, and we propose that altered systemic levels of FICZ caused by such compounds may have physiological consequences

    Influence of genetic factors on toluene diisocyanate-related symptoms: evidence from a cross-sectional study

    No full text
    Abstract Background Toluene diisocyanate (TDI) is a highly reactive compound used in the production of, e.g., polyurethane foams and paints. TDI is known to cause respiratory symptoms and diseases. Because TDI causes symptoms in only a fraction of exposed workers, genetic factors may play a key role in disease susceptibility. Methods Workers (N = 132) exposed to TDI and a non-exposed group (N = 114) were analyzed for genotype (metabolising genes: CYP1A1*2A, CYP1A1*2B, GSTM1*O, GSTM3*B, GSTP1 I105V, GSTP1 A114V, GSTT1*O, MPO -463, NAT1*3, *4, *10, *11, *14, *15, NAT2*5, *6, *7, SULT1A1 R213H; immune-related genes: CCL5 -403, HLA-DQB1*05, TNF -308, TNF -863) and symptoms of the eyes, upper and lower airways (based on structured interviews). Results For three polymorphisms: CYP1A1*2A, CYP1A1*2B, and TNF -308 there was a pattern consistent with interaction between genotype and TDI exposure status for the majority of symptoms investigated, although it did reach statistical significance only for some symptoms: among TDI-exposed workers, the CYP1A1 variant carriers had increased risk (CYP1A1*2A and eye symptoms: variant carriers OR 2.0 95% CI 0.68–6.1, p-value for interaction 0.048; CYP1A1*2B and wheeze: IV carriers OR = 12, 1.4–110, p-value for interaction 0.057). TDI-exposed individuals with TNF-308 A were protected against the majority of symptoms, but it did not reach statistical significance. In the non-exposed group, however, TNF -308 A carriers showed higher risk of the majority of symptoms (eye symptoms: variant carriers OR = 2.8, 1.1–7.1, p-value for interaction 0.12; dry cough OR = 2.2, 0.69–7.2, p-value for interaction 0.036). Individuals with SULT1A1 213H had reduced risk both in the exposed and non-exposed groups. Other polymorphisms, showed associations to certain symptoms: among TDI-exposed,NAT1*10 carriers had a higher risk of eye symptoms and CCL5 -403 AG+AA as well as HLA-DQB1 *05 carriers displayed increased risk of symptoms of the lower airways. GSTM1, GSTM3 and GSTP1 only displayed effects on symptoms of the lower airways in the non-exposed group. Conclusion Specific gene-TDI interactions for symptoms of the eyes and lower airways appear to exist. The results suggest different mechanisms for TDI- and non-TDI-related symptoms of the eyes and lower airways.</p
    corecore