21 research outputs found

    Combining optogenetics with artificial microRNAs to characterize the effects of gene knockdown on presynaptic function within intact neuronal circuits

    Get PDF
    3siThe purpose of this protocol is to characterize the effect of gene knockdown on presynaptic function within intact neuronal circuits. We describe a workflow on how to combine artificial microRNA (miR)-mediated RNA interference with optogenetics to achieve selective stimulation of manipulated presynaptic boutons in acute brain slices. The experimental approach involves the use of a single viral construct and a single neuron-specific promoter to drive the expression of both an optogenetic probe and artificial miR(s) against presynaptic gene(s). When stereotactically injected in the brain region of interest, the expressed construct makes it possible to stimulate with light exclusively the neurons with reduced expression of the gene(s) under investigation. This strategy does not require the development and maintenance of genetically modified mouse lines and can in principle be applied to other organisms and to any neuronal gene of choice. We have recently applied it to investigate how the knockdown of alternative splice isoforms of presynaptic P/Q-type voltage-gated calcium channels (VGCCs) regulates shortterm synaptic plasticity at CA3 to CA1 excitatory synapses in acute hippocampal slices. A similar approach could also be used to manipulate and probe the neuronal circuitry in vivo.openopenThalhammer, Agnes; Jaudon, Fanny; Cingolani, Lorenzo A.*Thalhammer, Agnes; Jaudon, Fanny; Cingolani, Lorenzo A

    CRISPR-mediated activation of autism gene Itgb3 restores cortical network excitability via mGluR5 signaling

    Get PDF
    Many mutations in autism spectrum disorder (ASD) affect a single allele, indicating a key role for gene dosage in ASD susceptibility. Recently, haplo-insufficiency of ITGB3, the gene encoding the extracellular matrix receptor β3 integrin, was associated with ASD. Accordingly, Itgb3 knockout (KO) mice exhibit autism-like phenotypes. The pathophysiological mechanisms of Itgb3 remain, however, unknown, and the potential of targeting this gene for developing ASD therapies uninvestigated. By combining molecular, biochemical, imaging, and pharmacological analyses, we establish that Itgb3 haplo-insufficiency impairs cortical network excitability by promoting extra-synaptic over synaptic signaling of the metabotropic glutamate receptor mGluR5, which is similarly dysregulated in fragile X syndrome, the most frequent monogenic form of ASD. To assess the therapeutic potential of regulating Itgb3 gene dosage, we implemented CRISPR activation and compared its efficacy with that of a pharmacological rescue strategy for fragile X syndrome. Correction of neuronal Itgb3 haplo-insufficiency by CRISPR activation rebalanced network excitability as effectively as blockade of mGluR5 with the selective antagonist MPEP. Our findings reveal an unexpected functional interaction between two ASD genes, thereby validating the pathogenicity of ITGB3 haplo-insufficiency. Further, they pave the way for exploiting CRISPR activation as gene therapy for normalizing gene dosage and network excitability in ASD

    Diverse inflammatory threats modulate astrocytes Ca2+ signaling via connexin43 hemichannels in organotypic spinal slices

    Get PDF
    Neuroinflammation is an escalation factor shared by a vast range of central nervous system (CNS) pathologies, from neurodegenerative diseases to neuropsychiatric disorders. CNS immune status emerges by the integration of the responses of resident and not resident cells, leading to alterations in neural circuits functions. To explore spinal cord astrocyte reactivity to inflammatory threats we focused our study on the effects of local inflammation in a controlled micro-environment, the organotypic spinal slices, developed from the spinal cord of mouse embryos. These organ cultures represent a complex in vitro model where sensory-motor cytoarchitecture, synaptic properties and spinal cord resident cells, are retained in a 3D fashion and we recently exploit these cultures to model two diverse immune conditions in the CNS, involving different inflammatory networks and products. Here, we specifically focus on the tuning of calcium signaling in astrocytes by these diverse types of inflammation and we investigate the mechanisms which modulate intracellular calcium release and its spreading among astrocytes in the inflamed environment. Organotypic spinal cord slices are cultured for two or three weeks in vitro (WIV) and exposed for 6 h to a cocktail of cytokines (CKs), composed by tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1 β) and granulocyte macrophage-colony stimulating factor (GM-CSF), or to lipopolysaccharide (LPS). By live calcium imaging of the ven- tral horn, we document an increase in active astrocytes and in the occurrence of spontaneous calcium oscillations displayed by these cells when exposed to each inflammatory threat. Through several pharmacological treatments, we demonstrate that intracellular calcium sources and the activation of connexin 43 (Cx43) hemichannels have a pivotal role in increasing calcium intercellular communication in both CKs and LPS conditions, while the Cx43 gap junction communication is apparently reduced by the inflammatory treatments

    Alternative Splicing of P/Q-Type Ca2+ Channels Shapes Presynaptic Plasticity

    Get PDF
    Alternative splicing of pre-mRNAs is prominent in the mammalian brain, where it is thought to expand proteome diversity. For example, alternative splicing of voltage-gated Ca2+ channel (VGCC) a1 subunits can generate thousands of isoforms with differential properties and expression patterns. However, the impact of this molecular diversity on brain function, particularly on synaptic transmission, which crucially depends on VGCCs, is unclear. Here, we investigate how two major splice isoforms of P/Q-type VGCCs (Cav2.1[EFa/b]) regulate presynaptic plasticity in hippocampal neurons. We find that the efficacy of P/Q-type VGCC isoforms in supporting synaptic transmission is markedly different, with Cav2.1[EFa] promoting synaptic depression and Cav2.1[EFb] synaptic facilitation. Following a reduction in network activity, hippocampal neurons upregulate selectively Cav2.1[EFa], the isoform exhibiting the higher synaptic efficacy, thus effectively supporting presynaptic homeostatic plasticity. Therefore, the balance between VGCC splice variants at the synapse is a key factor in controlling neurotransmitter release and presynaptic plasticity

    Distributed interfacing by nanoscale photodiodes enables single-neuron light activation and sensory enhancement in 3D spinal explants

    Get PDF
    Among emerging technologies developed to interface neuronal signaling, engineering electrodes at the nanoscale would yield more precise biodevices opening to progress in neural circuit investigations and to new therapeutic potential. Despite remarkable progress in miniature electronics for less invasive neurostimulation, most nano-enabled, optically triggered interfaces are demonstrated in cultured cells, which precludes the studies of natural neural circuits. We exploit here free-standing silicon-based nanoscale photodiodes to optically modulate single, identified neurons in mammalian spinal cord explants. With near-infrared light stimulation, we show that activating single excitatory or inhibitory neurons differently affects sensory circuits processing in the dorsal horn. We successfully functionalize nano-photodiodes to target single molecules, such as glutamate AMPA receptor subunits, thus enabling light activation of specific synaptic pathways. We conclude that nano-enabled neural interfaces can modulate selected sensory networks with low invasiveness. The use of nanoscale photodiodes can thus provide original perspective in linking neural activity to specific behavioral outcome

    The Tumor Suppressor DAB2IP Is Regulated by Cell Contact and Contributes to YAP/TAZ Inhibition in Confluent Cells

    Get PDF
    External and internal mechanical forces modulate cell morphology, movement, proliferation and metabolism, and represent crucial inputs for tissue homeostasis. The transcriptional regulators YAP and TAZ are important effectors of mechanical signaling and are frequently activated in solid tumors, correlating with metastasis, chemoresistance, and shorter patient survival. YAP/TAZ activity is controlled by various pathways that sense cell shape, polarity, contacts, and mechanical tension. In tumors, aberrant YAP/TAZ activation may result from cancer-related alterations of such regulatory networks. The tumor suppressor DAB2IP is a Ras-GAP and scaffold protein that negatively modulates multiple oncogenic pathways and is frequently downregulated or inactivated in solid tumors. Here, we provide evidence that DAB2IP expression is sustained by cell confluency. We also find that DAB2IP depletion in confluent cells alters their morphology, reducing cell packing while increasing cell stiffness. Finally, we find that DAB2IP depletion in confluent cells favors YAP/TAZ nuclear localization and transcriptional activity, while its ectopic expression in subconfluent cells increases YAP/TAZ retention in the cytoplasm. Together, these data suggest that DAB2IP may function as a sensor of cell interactions, contributing to dampening cellular responses to oncogenic inputs in confluent cells and that DAB2IP loss-of-function would facilitate YAP/TAZ activation in intact epithelia, accelerating oncogenic transformation

    Exogenous alpha-Synuclein decreases raft partitioning of Cav2.2 channels inducing dopamine release

    Get PDF
    alpha-Synuclein is thought to regulate neurotransmitter release through multiple interactions with presynaptic proteins, cytoskeletal elements, ion channels, and synaptic vesicles membrane. alpha-Synuclein is abundant in the presynaptic compartment, and its release from neurons and glia has been described as responsible for spreading of alpha-synuclein-derived pathology. alpha-Synuclein-dependent dysregulation of neurotransmitter release might occur via its action on surface-exposed calcium channels. Here, we provide electrophysiological and biochemical evidence to show that alpha-synuclein, applied to rat neurons in culture or striatal slices, selectively activates Cav2.2 channels, and said activation correlates with increased neurotransmitter release. Furthermore, in vivo perfusion of alpha-synuclein into the striatum also leads to acute dopamine release. We further demonstrate that alpha-synuclein reduces the amount of plasma membrane cholesterol and alters the partitioning of Cav2.2 channels, which move from raft to cholesterol-poor areas of the plasma membrane. We provide evidence for a novel mechanism through which alpha-synuclein acts from the extracellular milieu to modulate neurotransmitter release and propose a unifying hypothesis for the mechanism of alpha-synuclein action on multiple targets: the reorganization of plasma membrane microdomains

    Cell adhesion and homeostatic synaptic plasticity

    No full text
    At synapses, pre- and post-synaptic cells get in direct contact with each other via cell adhesion molecules (CAMs). Several CAMs have been identified at the neuromuscular junction and at central synapses, where they regulate synaptic strength, by recruiting scaffolding proteins, neurotransmitter receptors and synaptic vesicles in response to the binding of counter-receptors across the synaptic cleft. Many synapses are also surrounded by astrocytic processes and embedded in conspicuous extracellular matrix (ECM). It is now widely recognized that astrocytes play a central role in regulating the synaptic machinery by exchanging information with the neuronal elements via diffusible molecules and direct physical interactions; this has lead to the concept of the 'tri-partite synapse'. More recently, the term 'tetra-partite synapse' has been introduced to underlie the importance of ECM in shaping synaptic function by mediating interaction and signaling between neurons and astrocytes. Here, we will review how this integrated view of the synapse can help us understand homeostatic synaptic plasticity at the neuromuscular junction and in the central nervous system. We will explore how synaptic CAMs regulate two forms of homeostatic plasticity: (i) postsynaptic scaling of synaptic currents to counteract changes in neuronal network activity and (ii) the compensatory modulation of presynaptic neurotransmitter release in response to changes in postsynaptic efficacy. We will discuss recent findings on activity-dependent trans-synaptic signaling events and the role of cell adhesion in the feedback control of network activity. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'

    Activity-dependent Protein Dynamics Define Interconnected Cores of Co-regulated Postsynaptic Proteins*

    No full text
    Synapses are highly dynamic structures that mediate cell-cell communication in the central nervous system. Their molecular composition is altered in an activity-dependent fashion, which modulates the efficacy of subsequent synaptic transmission events. Whereas activity-dependent trafficking of individual key synaptic proteins into and out of the synapse has been characterized previously, global activity-dependent changes in the synaptic proteome have not been studied. To test the feasibility of carrying out an unbiased large-scale approach, we investigated alterations in the molecular composition of synaptic spines following mass stimulation of the central nervous system induced by pilocarpine. We observed widespread changes in relative synaptic abundances encompassing essentially all proteins, supporting the view that the molecular composition of the postsynaptic density is tightly regulated. In most cases, we observed that members of gene families displayed coordinate regulation even when they were not known to physically interact. Analysis of correlated synaptic localization revealed a tightly co-regulated cluster of proteins, consisting of mainly glutamate receptors and their adaptors. This cluster constitutes a functional core of the postsynaptic machinery, and changes in its size affect synaptic strength and synaptic size. Our data show that the unbiased investigation of activity-dependent signaling of the postsynaptic density proteome can offer valuable new information on synaptic plasticity

    Nanoscale organization of CaV2.1 splice isoforms at presynaptic terminals: implications for synaptic vesicle release and synaptic facilitation

    No full text
    The distance between Ca(V)2.1 voltage-gated Ca2+ channels and the Ca2+ sensor responsible for vesicle release at presynaptic terminals is critical for determining synaptic strength. Yet, the molecular mechanisms responsible for a loose coupling configuration of CaV2.1 in certain synapses or developmental periods and a tight one in others remain unknown. Here, we examine the nanoscale organization of two Ca(V)2.1 splice isoforms (Ca(V)2.1[EFa] and Ca(V)2.1[EFb]) at presynaptic terminals by superresolution structured illumination microscopy. We find that Ca(V)2.1[EFa] is more tightly co-localized with presynaptic markers than Ca(V)2.1[EFb], suggesting that alternative splicing plays a crucial role in the synaptic organization of Ca(V)2.1 channels
    corecore