7 research outputs found

    A Novel Toxoplasma gondii Nuclear Factor TgNF3 Is a Dynamic Chromatin-Associated Component, Modulator of Nucleolar Architecture and Parasite Virulence

    Get PDF
    International audienceIn Toxoplasma gondii, cis-acting elements present in promoter sequences of genes that are stage-specifically regulated have been described. However, the nuclear factors that bind to these cis-acting elements and regulate promoter activities have not been identified. In the present study, we performed affinity purification, followed by proteomic analysis, to identify nuclear factors that bind to a stage-specific promoter in T. gondii. This led to the identification of several nuclear factors in T. gondii including a novel factor, designated herein as TgNF3. The N-terminal domain of TgNF3 shares similarities with the N-terminus of yeast nuclear FK506-binding protein (FKBP), known as a histone chaperone regulating gene silencing. Using anti-TgNF3 antibodies, HA-FLAG and YFP-tagged TgNF3, we show that TgNF3 is predominantly a parasite nucleolar, chromatin-associated protein that binds specifically to T. gondii gene promoters in vivo. Genome-wide analysis using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified promoter occupancies by TgNF3. In addition, TgNF3 has a direct role in transcriptional control of genes involved in parasite metabolism, transcription and translation. The ectopic expression of TgNF3 in the tachyzoites revealed dynamic changes in the size of the nucleolus, leading to a severe attenuation of virulence in vivo. We demonstrate that TgNF3 physically interacts with H3, H4 and H2A/H2B assembled into bona fide core and nucleosome-associated histones. Furthermore, TgNF3 interacts specifically to histones in the context of stage-specific gene silencing of a promoter that lacks active epigenetic acetylated histone marks. In contrast to virulent tachyzoites, which express the majority of TgNF3 in the nucleolus, the protein is exclusively located in the cytoplasm of the avirulent bradyzoites. We propose a model where TgNF3 acts essentially to coordinate nucleolus and nuclear functions by modulating nucleosome activities during the intracellular proliferation of the virulent tachyzoites of T. gondii

    Proteomic and glycomic analyses of N-glycosylated structures involved in toxoplasma gondii-host cell interactions.

    No full text
    International audienceThe apicomplexan parasite Toxoplasma gondii recognizes, binds and penetrates virtually any kind of mammalian cell using a repertoire of proteins released from late secretory organelles and a unique form of gliding motility (also named glideosome) that critically depends on actin filaments and myosin. How T. gondii glycosylated proteins mediate host-parasite interactions remains elusive. To date, only limited evidence is available concerning N-glycosylation in apicomplexans. Here, we report comprehensive proteomic and glycomic analyses showing that several key components required for host cell-T. gondii interactions are N-glycosylated. Detailed structural characterization confirmed that N-glycans from T. gondii total protein extracts consist of oligomannosidic (Man5-9GlcNAc2) and paucimannosidic (Man3-4GlcNAc2) sugars, which are rarely present on mature eukaryotic glycoproteins. In situ fluorescence using Concanavalin A (Con A) and Pisum sativum agglutinin (PSA) predominantly stained the entire parasite body. Visualization of Toxoplasma glycoproteins purified by affinity chromatography followed by detailed proteomic and glycan analyses identified components involved in gliding motility, moving junction and other additional functions implicated in intracellular development. Importantly, tunicamycin-treated parasites are considerably reduced in motility, host cell invasion and growth. Collectively, these results indicate that N-glycosylation probably participates in modifying key proteins that are essential for host cell invasion by T. gondii

    Proteomics towards the understanding of elicitor induced resistance of grapevine against downy mildew

    No full text
    Elicitors are known to trigger plant defenses in response to biotic stress, but do not systematically lead to effective resistance to pathogens. The reasons explaining such differences remain misunderstood. Therefore, elicitation and induced resistance (IR) were investigated through the comparison of two modified beta-1,3 glucans applied on grapevine (Vitis vinifera) leaves before and after inoculation with Plasmopara viticola, the causal agent of downy mildew. The sulfated (PS3) and the shortened (H13) forms of laminarin are both known to elicit defense responses whereas only PS3 induces resistance against downy mildew. The analysis of the 2-DE gel electrophoresis revealed that PS3 and H13 induced distinct proteomic profiles after treatment and pathogen inoculation. Our results point out that the PS3-induced resistance is associated with the activation of the primary metabolism especially on amino acids and carbohydrates pathways. In addition, few proteins, such as the 12-oxophytodienoate reductase (OPR-like) related to the OPDA pathway, and an Arsenite-resistance protein (Serrate -like protein) could be considered as useful markers of induced resistance. Significance: One strategy to reduce the application of fungicides is the use of elicitors which induce plant defense responses. Nonetheless, the elicitors do not systematically lead to resistance against pathogens. The lack of correlation between plant defense activation and induced resistance (IR) requires the investigation of what makes the specificity of elicitor-IR. In this study, the two beta-glucans elicitors, sulfated (PS3) and short (H13) laminarins, were used in the grapevine/ Plasmopara viticola interaction since only the first one leads to resistance against downy mildew. To disclose IR specificity, proteomic approach has been employed to compare the two treatments before and after P. viticola inoculation. The analysis of the 2-DE revealed that PS3 and H13 induced distinct proteomic profiles after treatment and pathogen inoculation. Significant increase of the number of proteins regulated by PS3, relative to both H13 and time-points, is correlated with the resistance process establishment. Our results point that the PS3-induced resistance requires the activation of the primary metabolism especially on amino acids and carbohydrates pathways. In addition, few proteins, such as the 12-oxophytodienoate reductase (OPR-like) related to the OPDA pathway, and an Arsenite-resistance protein (Serrate-like protein) could constitute useful markers of PS3 induced resistance

    Unconventional endosome-like compartment and retromer complex in Toxoplasma gondii govern parasite integrity and host infection

    No full text
    International audienceMembrane trafficking pathways play critical roles in Apicomplexa, a phylum of protozoan parasites that cause life-threatening diseases worldwide. Here we report the first retromer-trafficking interactome in Toxoplasma gondii. This retromer complex includes a trimer Vps35–Vps26–Vps29 core complex that serves as a hub for the endosome-like compartment and parasite-specific proteins. Conditional ablation of TgVps35 reveals that the retromer complex is crucial for the biogenesis of secretory organelles and for maintaining parasite morphology. We identify TgHP12 as a parasite-specific and retromer-associated protein with functions unrelated to secretory organelle formation. Furthermore, the major facilitator superfamily homologue named TgHP03, which is a multiple spanning and ligand transmembrane transporter, is maintained at the parasite membrane by retromer-mediated endocytic recycling. Thus, our findings highlight that both evolutionarily conserved and unconventional proteins act in concert in T. gondii by controlling retrograde transport that is essential for parasite integrity and host infection

    Toxoplasma Sortilin-like Receptor Regulates Protein Transport and Is Essential for Apical Secretory Organelle Biogenesis and Host Infection

    No full text
    International audienceApicomplexan parasites have an assortment of unique apical secretory organelles (rhoptries and micronemes), which have crucial functions in host infection. Here, we show that a Toxoplasma gondii sortilin-like receptor (TgSORTLR) is required for the subcellular localization and formation of apical secretory organelles.TgSORTLR is a transmembrane protein that resides within Golgi-endosomal related compartments. The lumenal domain specifically interacts with rhoptry and microneme proteins, while the cytoplasmic tail of TgSORTLR recruits cytosolic sorting machinery involved in anterograde and retrograde protein transport. Ectopic expression of the N-terminal TgSORTLR lumenal domain results in dominant negative effects with the mislocalization of both endogenous TgSORTLR as well as rhoptry and microneme proteins. Conditional ablation of TgSORTLR disrupts rhoptry and microneme biogenesis, inhibits parasite motility, and blocks both invasion into and egress from host cells. Thus, the sortilin-like receptor is essential for protein trafficking and the biogenesis of key secretory organelles in Toxoplasma
    corecore