7 research outputs found

    ChemicalDrift 1.0: an open-source Lagrangian chemical-fate and transport model for organic aquatic pollutants

    Get PDF
    A new model for transport and fate of chemicals in the aquatic environment is presented. The tool, named ChemicalDrift, is integrated into the open-source Lagrangian framework OpenDrift and is hereby presented for organic compounds. The supported chemical processes include the degradation, the volatilization, and the partitioning between the different phases that a target chemical can be associated with in the aquatic environment, e.g. dissolved, bound to suspended particles, or deposited to the seabed sediments. The dependencies of the chemical processes on changes in temperature, salinity, and particle concentration are formulated and implemented. The chemical-fate modelling is combined with wide support for hydrodynamics by the integration within the Lagrangian framework which provides e.g. advection by ocean currents, diffusion, wind-induced turbulent mixing, and Stokes drift generated by waves. A flexible interface compatible with a wide range of available metocean data is made accessible by the integration, making the tool easily adaptable to different spatio-temporal scales and fit for modelling of complex coastal regions. Further inherent capabilities of the Lagrangian approach include the seamless tracking and separation of multiple sources, e.g. pollutants emitted from ships or from rivers or water treatment plants. Specific interfaces to a dataset produced by a model of emissions from shipping and to an unstructured-grid oceanographic model of the Adriatic Sea are provided. The model includes a database of chemical parameters for a set of poly-aromatic hydrocarbons and a database of emission factors for different chemicals found in discharged waters from sulfur emission abatement systems in marine vessels. A post-processing tool for generating mean concentrations of a target chemical, over customizable spatio-temporal grids, is provided. Model development and simulation results demonstrating the functionalities of the model are presented, while tuning of parameters, validation, and reporting of numerical results are planned as future activities. The ChemicalDrift model flexibility, functionalities, and potential are demonstrated through a selection of examples, introducing the model as a freely available and open-source tool for chemical fate and transport that can be applied to assess the risks of contamination by organic pollutants in the aquatic environment

    Geometric distortion measurement for shape coding: a contemporary review

    Get PDF
    Geometric distortion measurement and the associated metrics involved are integral to the rate-distortion (RD) shape coding framework, with importantly the efficacy of the metrics being strongly influenced by the underlying measurement strategy. This has been the catalyst for many different techniques with this paper presenting a comprehensive review of geometric distortion measurement, the diverse metrics applied and their impact on shape coding. The respective performance of these measuring strategies is analysed from both a RD and complexity perspective, with a recent distortion measurement technique based on arc-length-parameterisation being comparatively evaluated. Some contemporary research challenges are also investigated, including schemes to effectively quantify shape deformation

    Applications of soft biomaterials based on organic and hybrid thin films deposited from the vapor phase

    No full text
    Soft biomaterials are a crucial component in several application fields. They are used, for example, in biomedical implants, biosensors, drug delivery systems as well as in tissue engineering. In parallel to extensive ongoing efforts to synthesize new materials, the development of means to tailor the materials' surface properties and thus their interaction with the environment is an important field of research. This has led to the emergence of several surface modification techniques that enable the exploitation of biomaterials in a broader range of technologies. In particular, the use of functional thin films can enable a plethora of biomedical applications by combining advantageous bulk properties of the substrate (e.g. flexibility, lightweight, structural strength) with tailored surface properties of the thin film (e.g. enhancing/prevention of cell proliferation, controlled drug release). For some biomedical applications, thin films can also be the main functional components, e.g. in biosensors. The present review focuses on recent developments in the applications of soft biomaterials based on thin films deposited from the vapor phase. In the field of soft biomaterials, the possibility of depositing from the vapor phase - without the need for any solvents - offers the unprecedented benefit that no toxic leachables are included in the biomaterial. Further, due to the complete lack of solvents and chemicals overall being used in small quantities only, depositing thin films from the vapor phase can be a more sustainable choice than other techniques that are commonly used

    Towards a Comprehensive Evaluation of the Environmental and Health Impacts of Shipping Emissions

    No full text
    We present a new concept for marine research, applied in the EU-funded project EMERGE, “Evaluation, control and Mitigation of the EnviRonmental impacts of shippinG Emissions” (2020–2024; https://emerge-h2020.eu/). For the first time, both the various marine and atmospheric impacts of the shipping sector have been and will be comprehensively analyzed, using a concerted modelling and measurements framework. The experimental part of the project focuses on five European geographical case studies in different ecologically vulnerable regions, and a mobile onboard case study. The EMERGE consortium has also developed a harmonised and integrated modelling framework to assess the combined impacts of shipping emissions, both (i) on the marine ecosystems and (ii) the atmospheric environment. The first results include substantial refinements of a range of models to be applied, especially those for the STEAM and OpenDrift models. In particular, the STEAM (Ship Traffic Emission Assessment Model) model has been extended to allow for the effects of atmospheric and oceanographic factors on the fuel consumption and emissions of the ships. The OpenDrift model has been improved to take into account the partitioning, degradation, and volatilization of pollutants in water. The predicted emission and discharge values have been used as input for both regional scale atmospheric dispersion models, such as WRF-CMAQ (Weather Research and Forecasting—Community Multiscale Air Quality Model) and SILAM (System for Integrated modeLling of Atmospheric composition), and water quality and circulation models, such as OpenDrift (Open source model for the drifting of substances in the ocean) and Delft3D (oceanographic model). The case study regions are Eastern Mediterranean, Northern Adriatic Sea, the Lagoon of Aveiro, the Solent Strait and the Öresund Strait. We have also conducted a substantial part of the experimental campaigns scheduled in the project. The final assessment will include the benefits and costs of control and mitigation options affecting water quality, air pollution exposure, health impacts, climate forcing, and ecotoxicological effects and bioaccumulation of pollutants in marine biota

    Towards a Comprehensive Evaluation of the Environmental and Health Impacts of Shipping Emissions

    No full text
    We present a new concept for marine research, applied in the EU-funded project EMERGE, “Evaluation, control and Mitigation of the EnviRonmental impacts of shippinG Emissions” (2020–2024; https://emerge-h2020.eu/). For the first time, both the various marine and atmospheric impacts of the shipping sector have been and will be comprehensively analyzed, using a concerted modelling and measurements framework. The experimental part of the project focuses on five European geographical case studies in different ecologically vulnerable regions, and a mobile onboard case study. The EMERGE consortium has also developed a harmonised and integrated modelling framework to assess the combined impacts of shipping emissions, both (i) on the marine ecosystems and (ii) the atmospheric environment. The first results include substantial refinements of a range of models to be applied, especially those for the STEAM and OpenDrift models. In particular, the STEAM (Ship Traffic Emission Assessment Model) model has been extended to allow for the effects of atmospheric and oceanographic factors on the fuel consumption and emissions of the ships. The OpenDrift model has been improved to take into account the partitioning, degradation, and volatilization of pollutants in water. The predicted emission and discharge values have been used as input for both regional scale atmospheric dispersion models, such as WRF-CMAQ (Weather Research and Forecasting—Community Multiscale Air Quality Model) and SILAM (System for Integrated modeLling of Atmospheric composition), and water quality and circulation models, such as OpenDrift (Open source model for the drifting of substances in the ocean) and Delft3D (oceanographic model). The case study regions are Eastern Mediterranean, Northern Adriatic Sea, the Lagoon of Aveiro, the Solent Strait and the Öresund Strait. We have also conducted a substantial part of the experimental campaigns scheduled in the project. The final assessment will include the benefits and costs of control and mitigation options affecting water quality, air pollution exposure, health impacts, climate forcing, and ecotoxicological effects and bioaccumulation of pollutants in marine biota

    Towards a Comprehensive Evaluation of the Environmental and Health Impacts of Shipping Emissions

    No full text
    We present a new concept for marine research, applied in the EU-funded project EMERGE, “Evaluation, control and Mitigation of the EnviRonmental impacts of shippinG Emissions” (2020–2024; https://emerge-h2020.eu/ ). For the first time, both the various marine and atmospheric impacts of the shipping sector have been and will be comprehensively analyzed, using a concerted modelling and measurements framework. The experimental part of the project focuses on five European geographical case studies in different ecologically vulnerable regions, and a mobile onboard case study. The EMERGE consortium has also developed a harmonised and integrated modelling framework to assess the combined impacts of shipping emissions, both (i) on the marine ecosystems and (ii) the atmospheric environment. The first results include substantial refinements of a range of models to be applied, especially those for the STEAM and OpenDrift models. In particular, the STEAM (Ship Traffic Emission Assessment Model) model has been extended to allow for the effects of atmospheric and oceanographic factors on the fuel consumption and emissions of the ships. The OpenDrift model has been improved to take into account the partitioning, degradation, and volatilization of pollutants in water. The predicted emission and discharge values have been used as input for both regional scale atmospheric dispersion models, such as WRF-CMAQ (Weather Research and Forecasting—Community Multiscale Air Quality Model) and SILAM (System for Integrated modeLling of Atmospheric composition), and water quality and circulation models, such as OpenDrift (Open source model for the drifting of substances in the ocean) and Delft3D (oceanographic model). The case study regions are Eastern Mediterranean, Northern Adriatic Sea, the Lagoon of Aveiro, the Solent Strait and the 6resund Strait. We have also conducted a substantial part of the experimental campaigns scheduled in the project. The final assessment will include the benefits and costs of control and mitigation options affecting water quality, air pollution exposure, health impacts, climate forcing, and ecotoxicological effects and bioaccumulation of pollutants in marine biota
    corecore