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Abstract  
Geometric distortion measurement and the associated metrics involved are integral to the rate-distortion 
(RD) shape coding framework, with importantly the efficacy of the metrics being strongly influenced by 
the underlying measurement strategy. This has been the catalyst for many different techniques with this 
paper presenting a comprehensive review of geometric distortion measurement, the diverse metrics 
applied and their impact on shape coding. The respective performance of these measuring strategies is 
analysed from both a RD and complexity perspective, with a recent distortion measurement technique 
based on arc-length-parameterisation being comparatively evaluated. Some contemporary research 
challenges are also investigated, including schemes to effectively quantify shape deformation. 
 
Content indicator: Image processing/ coding. 
 
Keywords: Object based video coding, shape coding, geometric distortion measurement.   

1. Introduction 

Advances in object-oriented video coding using shape information [Aghito and Forchhammer 2004; 
Aghito and Forchhammer 2006; Brady et al. 1997; Freeman 1961; Richardson 2003] are increasingly 
facilitating more efficient retrieval, manipulation and interactive editing functionality for both natural and 
synthetic sequences. The ubiquitous pursuit for greater coding efficiency coupled with the inherent 
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bandwidth limitations of existing communication technologies mean a wide range of diverse applications 
from medical imaging and patient monitoring, video-on-demand and Internet streaming of multimedia 
content, through to biometric authentication systems, mobile video transmissions for handheld devices and 
hyperlinked video/television, will all significantly benefit from more effectual shape coding strategies.  
 
As video objects are defined by their shape, as well as texture and motion [Katsaggelos et al. 1998], shape 
coding has become an integral part of object-oriented video coding. Shape coders have evolved into two 
distinct classes [Katsaggelos, Kondi, Meier, Ostermann and Schuster 1998];  i) bitmap-based which 
encode every pixel within the shape and ii) contour-based  which focus on just the object shape outline 
[Katsaggelos, Kondi, Meier, Ostermann and Schuster 1998]. Contour-based shape coding can best be 
illustrated by means of the example in Figure 1. 
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(a)                                          (b)                                      (c)                                     (d)  

Figure 1: Shape coding example – (a) the 30th frame of the Miss America sequence, (b) the 
segmented object shape, (c) the shape contour, and (d) shape coding – the solid line is the 
reconstructed contour using (lossy) encoded information, while the dotted line is the original 
contour (c).  
 
Figure 1(a) is a single frame from the Miss America video sequence, with the corresponding extracted 
shape, commonly referred to as the binary alpha-plane, being shown in Figure 1 (b). The resulting shape 
contour is displayed in Figure 1 (c). The aim of all contour-based shape coding algorithms is that for some 
prescribed quality (distortion) threshold, a contour can be represented by a lower number of vertices than 
the original and vice versa. For example, the decoded shape (solid line) in Figure 1(d) requires only 13 
vertices compared with the original 297 vertices (dotted line) for a distortion (quality) value of 3.8dB. The 
review of shape coding techniques in [Katsaggelos, Kondi, Meier, Ostermann and Schuster 1998] draws 
the conclusion that the vertex-based polynomial shape coding framework is optimal in an operational-
rate-distortion (ORD) sense. The term rate refers to the number of bits required to encode a shape while 
the quality of the reconstructed shape is usually measured in terms of geometric distortion. Interestingly, 
no cognisance is taken of any perceptual shape deformation in this rate-distortion (RD) nexus, raising the 
issue over the importance of structural consistency in the reconstruction of decoded shapes. If for 
example, all circular objects are decoded as squares, even though the relevant distortion criterion is 
upheld, the corresponding subjective impact could be confusing and even disturbing. 
 
Several distortion metrics have been adopted within existing shape coding frameworks, including peak 
signal-to-noise ratio (PSNR) [Richardson 2003], the MPEG-4 distortion parameter Dn [Aghito and 
Forchhammer 2004; Aghito and Forchhammer 2006; Brady, Bossen and Murphy 1997; Katsaggelos, 
Kondi, Meier, Ostermann and Schuster 1998; Kondi et al. 2001] and a gamut of geometric distortion 
metrics [Bandyopadhyay and Kondi 2005; Chen and Ngan 2004; Hötter 1990; Hötter 1994; Katsaggelos, 
Kondi, Meier, Ostermann and Schuster 1998; Kondi et al. 1998; Kondi, Melnikov and Katsaggelos 2001; 
Kondi et al. 2004; Meier et al. 2000; Melnikov et al. 2000; O'Connell 1997; Schuster and Katsaggelos 
1997; Schuster et al. 1998; Wang et al. 2003], which each have differing intrinsic qualities. In many cases 
the foundations of the coding model are based upon a specific distortion metric, such as in the vertex-
based shape coding and Polygon/B-spline (BS) frameworks. Moreover, the reconstruction quality of an 
object shape is highly dependent on the distortion metric employed with the way the distortion is 



measured influencing the performance of the metric and by implication, the encoder. Geometric distortion 
metric has a wide range of application domains including for example, medical imaging for patient 
monitoring where accurate measurement of the 2D/3D deformation in digital mammograms [Matsubaraa 
et al. 2005] aids diagnosis and discrimination between cancerous and breast tissue structures, and in 
automatic damage assessment and structural deformation monitoring [Qiaoa et al. 2007]. To clarify the 
terminology used in this paper, the distortion metric is a parameter that objectively reflects the quality of a 
measurement, while distortion measurement refers to the underlying algorithm used to calculate the 
distortion component of a distortion metric. In this context, it is clear distortion measurement techniques 
play a crucial role in both distortion metrics and the underlying shape coding process. 
 
Existing geometric distortion measurement techniques include the shortest absolute distance (SAD) 
[Hötter 1990; Hötter 1994; Katsaggelos, Kondi, Meier, Ostermann and Schuster 1998], distortion band 
(DB) [Katsaggelos, Kondi, Meier, Ostermann and Schuster 1998] and tolerance band (TB) [Kondi, Meier, 
Schuster and Katsaggelos 1998; Kondi, Melnikov and Katsaggelos 2001; Kondi, Melnikov and 
Katsaggelos 2004], accurate distortion for shape coding (ADMSC) [Sohel et al. 2006], and chord-length-
parameterisation based distortion measurement for faster encoding (DMCLP) [Sohel et al. 2007]. This 
paper aims to provide a contemporary treatise on the performance of these distortion metrics and 
measurement techniques from a shape coding perspective, allied with an investigation into current 
research challenges in this field including, ways of characterising shape deformation within the encoding 
paradigm. The paper also examines the recently introduced approach distortion measurement based on 
arc-length-parameterisation (DMALP) [Sohel and Bennamoun 2008], which exhibits enhanced RD 
performance.  
 
The remainder of this paper is organised as follows: Section 2 presents a brief description of the most 
popular distortion metrics, while Section 3 provides a comprehensive review of geometric distortion 
measurement techniques. An experimental results analysis is presented in Section 4, with some future 
research directions discussed in Section 5.  Finally, some concluding remarks are given in Section 6. 
 
2. Distortion metrics 
 
To specify, analyse and contrast various shape coding systems, it is necessary to determine the quality of 
the resulting decoded shapes. Visual quality is inherently subjective and influenced by many factors that 
make it difficult to obtain accurate, consistent and repeatable measures of the perceived quality 
[Richardson 2003]. A viewer’s opinion of visual quality is often influenced on factors like their 
psychophysical state or the nature of the task at hand. Examples include passively watching a movie, 
keenly watching the closing moments of an exciting sporting event, participating in a video-conference 
session, or trying to identify either a person or objects in a video surveillance scene. Furthermore, 
subjective measures are time consuming and manually intensive [Richardson 2003]. Conversely, 
measuring visual quality with objective criteria does afford accurate and repeatable results at much lower 
cost, though as the video quality experts group (VQEG) [VQEG 1999] reported, there is no unified 
quantitative measurement system that faithfully reproduces the perceptual experience of a human observer 
and no single metric that consistently outperforms all other techniques from a subjective viewpoint [Wu 
and Rao 2006]. As a consequence, various numerical techniques for objective quality measurement have 
evolved for shape coding, a few of which will now be reviewed. 
 
 
2.1. Peak signal to noise ratio (PSNR)  
 
This ubiquitous distortion metric is normally expressed on a logarithmic scale by: 
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where MSE is the mean-squared-error between an original and approximated signal and n is the sample 
size in bits. 
 
Despite its broad appeal and application, PSNR has not gained popularity in (binary) shape coding 
[Katsaggelos, Kondi, Meier, Ostermann and Schuster 1998] primarily because the numerator value in (1) 
is 1, so it mainly depends on the denominator, which is the mean-squared (MS) distortion. PSNR also has 
some fundamental limitations [Richardson 2003], most notably requiring an unimpaired video as a 
reference, which may not always be readily available. It is also not easy to verify the original video had 
perfect fidelity, so it does not necessarily equate to an absolute subjective measure, i.e., a decoded video 
with higher PSNR value can produce poorer subjective quality than one with lower PSNR. These factors 
have led to the development of quality measurement techniques more appropriate to the shape coding 
domain, with two such metrics being extensively adopted. 
 

2.2. The MPEG-4 metric 

 
This metric ( nD ) is employed in the MPEG-4 standard and computes the ratio of the number of erroneous 
pixels in the approximated shape to the total number of pixels in the original to represent the shape 
distortion [Brady 1999]. It is formally defined as:  

 
shape original in the pixels ofnumber 

shape edapproximat in themismatched pixels ofnumber 
nD    (2) 

 
with nD  usually represented in percentile form [Wang et al. 2005]. The total number of erroneous pixels is 
the absolute error (AE) and this has been used as a quality metric in many applications [Schuster et al. 
2004; Soares and Pereira 2004]. nD provides a broader estimate of the reconstruction quality, and since its 
inclusion within the MPEG-4 standard, it has become widely applied [Aghito and Forchhammer 2004; 
Aghito and Forchhammer 2006; Brady, Bossen and Murphy 1997; Katsaggelos, Kondi, Meier, Ostermann 
and Schuster 1998; Kondi, Melnikov and Katsaggelos 2001].  

 
 
 
 
 



 
                     (a)                                               (b) 
Figure 2: Butterfly shape with the same nD = %05.0  – (a) with the antenna lost and (b) with the 
antenna preserved. 
 
It needs to be emphasised that as varying shapes will have different ratios of contour pixels to shape 
pixels, nD only truly has a physical interpretation when different approximations of the same shape are 
compared [Katsaggelos, Kondi, Meier, Ostermann and Schuster 1998]. The corollary of this is that 

nD may not sufficiently represent the actual distortion scenario for all cases. In the two Butterfly5 

examples in Figure 2 for instance, though both shape contours have the same nD = %05.0 , the appearance 
of the Figure 2(a) object looks subjectively dissimilar since the antenna has been completely lost, while it 
is fully preserved in Figure 2(b) (note unless otherwise specified, the numerals along the axes in the 
Figures throughout this paper are the respective Cartesian coordinate values). This implies the former 
contour will have a higher perceived distortion than the latter shape approximation. In contrast, geometric 
distortion measurement affords a direct representation of the quality of a shape approximation around the 
entire contour. 

 

2.3. pL norms 

 
This family of geometric distortion metrics comprises the pL norm category [Topiwala 1998], where the 

error term p is defined as:  
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where x and x~  are the original and approximated shapes respectively, N is the number of pixels in the 

shape, ix  and ix~  the thi pixels of the original and approximated shapes respectively, and ii xx ~  is the 

distance between them based upon the measurement criteria. Various weightings derived from the 

pL norm definition in (3) can be used as quality measures. For example, p=2 refers to the MS distortion, 

                                                 
5 IMSI’s Master Photo Collection, 1895 Francisco Blvd. East, San Rafael, CA 94901-5506, USA. 



while the L  ( p  ) and 1L  (p=1) norms correspond to the peak absolute distortion ( maxD ) and sum-

of-distortion-magnitudes (average distortion-magnitudes) respectively. The peak distortion is formally 
defined as:  
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while the MS distortion is given by: 
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As this pair of metrics provide the approximated shape quality around the whole contour, so efficiently 
reflecting dominant geometric features like sharp edges and corners, it has been broadly embraced by the 
shape coding research community [Bandyopadhyay and Kondi 2005; Chen and Ngan 2004; Katsaggelos, 
Kondi, Meier, Ostermann and Schuster 1998; Kondi, Meier, Schuster and Katsaggelos 1998; Kondi, 
Melnikov and Katsaggelos 2001; Kondi, Melnikov and Katsaggelos 2004; Meier, Schuster and 
Katsaggelos 2000; Schuster and Katsaggelos 1997; Sohel et al. 2007; Wang, Schuster and Katsaggelos 
2005].  
 

While the PSNR and nD calculations in (1) and (2) are both straightforward, differing approaches have 

been employed to compute the geometric distortion metrics. Their efficacy greatly depends on the 
distortion measurement techniques, so in the following section an overview of the most popular geometric 
shape distortion measurement techniques will be elucidated.  
 
3. Geometric distortion measurement techniques 
 
The simplest and most widely employed measurement technique is the SAD [Hötter 1990; Katsaggelos, 
Kondi, Meier, Ostermann and Schuster 1998; Koplowitz 1981; Schuster and Katsaggelos 1997; Sohel, 
Dooley and Karmakar 2006], which calculates the shortest absolute distance between the original and 
approximating shape contours. Other approaches that have been applied within the vertex-based 
polynomial shape coding framework, include the DB [Katsaggelos, Kondi, Meier, Ostermann and 
Schuster 1998] and TB [Kondi, Meier, Schuster and Katsaggelos 1998; Kondi, Melnikov and Katsaggelos 
2001; Kondi, Melnikov and Katsaggelos 2004] methods, while more recently two intuitive measuring 
techniques in [Sohel, Dooley and Karmakar 2006] and [Sohel, Karmakar and Dooley 2007] have been 
proposed, which respectively focus upon the accuracy and computational speed of the underlying 
distortion measurement process. A detailed delineation of these techniques follows. 
  

3.1. The Shortest Absolute Distance (SAD)  

 
In this technique the distortion at a contour point is defined as the perpendicular distance of that point 
from the corresponding edge of the approximating polygon. The SAD at an arbitrary contour point tb  with 

respect to an approximating polygon edge with endpoints 1ks  and ks  is given by:  
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where x and y are the corresponding Cartesian coordinate values and  abs  is the absolute value function. 
SAD calculates the distance from either the edge or its extensions, so in the Figure 3 example, segments 
GK, IM and HJ correspond to the respective SAD of line EF from contour points G, I and H. 
 

 
 

Figure 3: Illustration of the SAD and its limitations when the distance is measured from an 
extended line. 

The SAD measure is attractive due to its computational simplicity and minimal number of arithmetic 
operations [Katsaggelos, Kondi, Meier, Ostermann and Schuster 1998; Schuster and Katsaggelos 1997; 
Sohel, Dooley and Karmakar 2006], though it may not always accurately reflect the true distortion since 
the perpendicular distance does not necessarily correspond to the actual distance for all contour points 
[Sohel, Dooley and Karmakar 2006]. For instance, when the SAD from an extended part of a line segment 
is considered to be the minimum distance between a contour point and the line, it clearly fails to represent 
the actual distance. In these circumstances, the actual distance is measured from the contour point and the 
closer endpoint of that line segment which leads to discrepancies between the calculated and perceived 
distortion values, especially for contours with sharp edges and corners. The reason of this anomaly is 
illustrated in Figure 3. Using SAD, segments GK, IM and HJ correspond respectively to the shortest 
distances of line EF from contour points G, I and H. Of these three distances, both GK and HJ are 
measured from the extended lines EK and FJ respectively, though from a perceptual viewpoint this 
misinterprets the actual distortion, since GE is the distance of G from EF rather than GK as implied by (6). 
A similar observation applies to point H, which leads to the conclusion that as GK < GE, SAD-based 
ORD algorithms fail to take cognisance of the perceptual distance by excluding this significant distortion 
component. This is especially relevant when the shape contour has distinct geometric features such as the 
sharp edges and corners in Figure 4. 
 
Figures 4(a) and (b) respectively show an arbitrarily shaped object and its corresponding decoded contour 

using SAD-based ORD optimal algorithm for a peak distortion (4) of 1max D  pixel. The decoded contour 

has a peak distortion of 6.08 pixels at each of the four extrema object points, despite the distortion 

supposedly being bounded by 1max D  pixel. This is because at each corner point, the distortion has been 

measured by SAD with a value of 1 pixel from the extended line segments and as a consequence, has 



generated an inaccurate measurement. Another shortcoming of the SAD technique is the computational 
speed incurred for BS-based encoding. 

 
                                   (a)                                                (b)                                    

Figure 4: (a) An arbitrary shaped object and (b) approximated contour (solid line) from the 
encoded data by the basic vertex-based ORD optimal shape coding framework using SAD with 

1max D  pixel.  

Computational complexity: If there are BN points along the contour segment where the distortion is 

measured, SAD incurs  BNO  time when the approximated contour is represented by a single polygon 
edge. This is because the edge-distortion for all associated contour points is calculated from the candidate 
edge and checked against the corresponding admissible distortion. BS-based encoding in contrast requires 

 2
BNO  time to monitor the distortion, because a BS curve is in fact a concatenation of piecewise polygon-

edges and so for each contour point associated with a candidate curve, the individual distortion has to be 
measured from all edges forming the approximating curve. The minimum edge-distortion value is then 
assumed as the distortion for that particular contour point and compared against the corresponding 
admissible distortion value.   

3.2. The Distortion and Tolerance Bands (DB and TB) 

 
The DB technique only considers the peak ( L  norm in (4)) admissible distortion within the vertex-based 
ORD optimal polynomial shape coding framework [Katsaggelos, Kondi, Meier, Ostermann and Schuster 
1998]. A band of width equal to the fixed admissible distortion  maxD  is drawn around the original 
contour, so it is then only required to detect whether either a candidate approximating polygon-edge or BS 
curve resides completely inside the band. The DB was in fact originally designed to support fixed 
admissible peak distortions [Katsaggelos, Kondi, Meier, Ostermann and Schuster 1998; Schuster and 
Katsaggelos 1997], with the philosophy being successfully extended in [Bandyopadhyay and Kondi 2005; 
Kondi, Meier, Schuster and Katsaggelos 1998; Kondi, Melnikov and Katsaggelos 2001; Kondi, Melnikov 
and Katsaggelos 2004] to support variable admissible distortion based upon either the image intensity 
gradient of the object around the contour or the shape-curvature at the contour points [Kondi, Melnikov 
and Katsaggelos 2001]. This inherently affords the freedom to give greater emphasis to higher image 
gradient (or alternatively curvature) parts of a contour and vise versa. To support the notion of variable 
admissible distortion, the concept of DB was extended to the TB [Kondi, Meier, Schuster and Katsaggelos 
1998]. TB-based models use two admissible peak distortion bounds ( maxT  and minT ) for efficient coding 



with an admissible distortion  jT  at each individual contour point jb being determined using a linear 

mapping between the image-intensity gradient (curvature) and admissible distortion bounds. The TB 
operates according to the following three steps [Kondi, Meier, Schuster and Katsaggelos 1998; Kondi, 
Melnikov and Katsaggelos 2001; Kondi, Melnikov and Katsaggelos 2004]: i) draw a circle around each 
contour point jb of radius  jT , so the TB consists of the set of all points that lie inside the circles; ii) 

Convert the candidate polygon-edge or BS curve into points compatible with the TB-grid, which 
preferably is a sub-pixel grid in order to provide high precision and accuracy; and iii) Check the distortion 
and if all points on a candidate polygon-edge (or BS curve) lie inside TB, it is considered the candidate 
edge (curve) upholds the requisite distortion criteria.  
 
Generally, the DB and TB perform well in the classical ORD optimal shape coding framework and as the 
creation of the TB is performed outside the main computing loops, it can be efficiently used in the core of 
the ORD algorithms at modest computational cost. The TB checking process ensures every point on the 
approximating curve lies within the admissible distortion bound and while this is a necessary condition for 
distortion maintenance, it alone is crucially not sufficient. This is because the distortion of all contour 
points associated with a candidate edge are not individually considered, so there is the risk of some points 
lying beyond the admissible distortion from the approximated contour, as illustrated in Figure 5.  

  
                (a)                                 (b) 

Figure 5: Distortion measurement using the tolerance band – (a) the TB technique and (b) a 
magnified version of the region indicated by the rectangle in (a). 

Figure 5(a) shows the TB along with all its points (the half-pixel TB grid provides quarter-pixel accuracy) 
for the Neck region of the 31st frame of the Miss America video sequence with 2max T  and 2min T  

pixels (i.e., 2max D  pixels). Figure 5(b) displays the zoom-in portion of Figure 5(a) indicated by the 
rectangle, which reveals that despite the entire decoded contour lying inside the TB, two contour points 
with Cartesian coordinates  122,104  and  122,105  generate a peak distortion of 3 pixels. 
 
 
 



 

Figure 6: Example to illustrate trivial solution problem of TB/DB. 

Vigilance is required whenever applying both TB/DB to avoid trivial solutions [Katsaggelos, Kondi, 
Meier, Ostermann and Schuster 1998], whereby the encoder only codes a small portion of the contour, 
whilst appearing to have accurately encoded the entire contour. By definition, the framework attempts to 
select a set of control points (CP), between the first and last contour points so the reconstructed contour 
lies entirely inside the DB/TB. For a closed contour, the first and last contour points will obviously be 
coincident, which leads to the possibility of trivial solutions. Figure 6 provides an example of one such 
trivial solution for 1minmax TT  pixel. This shows the approximating contour is only located between 

contour points  117,83 ,  118,84 ,  118,83  and  117,83 , so though the decoded contour upholds the above 
definition, it actually only encodes a very small part of the contour. This situation can, to some extent, be 
resolved by using a sliding window (SW) [Katsaggelos, Kondi, Meier, Ostermann and Schuster 1998]. For 
example, the sample result in Figure 5(a) was obtained using a SW-length of 15  pixels and yet it produced 
erroneous distortions. A number of techniques to calculate the most appropriate SW-length are proposed 
in [Sohel, Dooley and Karmakar 2007; Sohel et al. 2006]. In addition, the TB can lead to increased 
quantisation errors as the approximating curve points must firstly be quantised to fit into the TB-grid, with 
the precision level of the TB being highly dependent on the TB-grid unit size. This said, from a 
performance perspective the only difference between DB and TB is that the former supports fixed 
admissible peak distortions, while the latter supports variable distortions, so without loss of generality, 
when minmax TT  , DB and TB are identical. 
 
Computational complexity: From the TB definition, every point on the candidate edge (curve) must be 
checked to see whether it belongs to the TB points set. The number of points compatible with the TB-grid 
on a candidate edge (curve) is  BNO , while the TB itself comprises a set of  BNO  points, so the full 

checking process for any candidate curve necessitates  2
BNO  time in the worst case for both polygon and 

BS-based encoding. To ensure high accuracy, the TB supports sub-pixel grids which increase the number 

of points, so the complexity is better expressed as  2
BNO   for both approximations, where  is the 

maximum number of TB points associated with a contour point. This means with 1max T  pixel, for grid-

sizes of 1, 2
1 , 3

1  and 4
1  pixels the corresponding values of   are 5, 13, 29 and 49. An alternative 

interpretation is these  values represent 3 ,2 ,1max T  and 4 pixels respectively on a grid-size of 1 pixel. 
 
Despite their wide ORD adoption, both SAD and TB/DB techniques are unable to ensure the accuracy of 
the geometric distortion measurement process in certain shape scenarios. This provided the impetus for the 
development of the ADMSC algorithm which guarantees accurate distortion measurement.  
 
  



3.3. Accurate distortion measurement for shape coding (ADMSC)  
 
ADMSC was formulated within the SAD framework to address its main limitation, when the distance is 
measured from an extended part of the candidate-edge rather than the edge itself. From a distortion 
measurement perspective, any contour point can lie in one of three possible positions relative to a polygon 
edge. The contour point can firstly be perpendicularly connected by a line directly onto the polygon edge 
or onto either of its extended parts. Examples illustrating all three relative positions are given in Figure 7 
for contour point O with respect to polygon edge EF. In Figure 7(a), since the perpendicular line from O  
directly intersects EF at M, OM is the minimum distance, while in Figure 7(b), the line intersects the 
extended EF at M and hence is closer to E, so OE is the minimum distance. Similar reasoning for Figure 
7(c) gives OF as the minimum distance. SAD in contrast measures this shortest distance as OM in all three 
cases, so it can be concluded that the different relative positions of a point with respect to an edge will 
lead to three different distortion measurements. To resolve this inaccuracy, it is firstly necessary to check 
the relative positions before actually calculating the distortion, though this monitoring process 
 

 

      

                 (a)                         (b)                       (c) 

Figure 7: Relative positions of contour point O  with respect to polygon edge EF  – the 
perpendicular line from the point intersects (a) the line itself, (b) and (c) the extended line.  

increases the overall computational overhead. ADMSC importantly provides a unified distortion measure 
that manages all three position scenarios without recourse to any checking and so guarantees an accurate 
measure of distortion. The ADMSC shortest distance d of point O from edge EF is formally expressed as: 

    2
4
122 ,, EFFMEMOMOFEd    (7) 

where  represents the absolute distance between two endpoints. 

 

To demonstrate the performance of ADMSC, Figure 8 shows the approximated arbitrary shape in Figure 
4(a) for 1max D  pixel. It is visually apparent from the results in Figures 4(a) and 7 that ADMSC has 
accurately measured every distortion compared with SAD, which has failed to correctly measure the 
distortion at the four corners. This demonstrates the advantage of ADMSC in accurately measuring all 
distortions and so generates a shape reconstruction more congruent with perceptual distortion. It also 
implies the notion of shape deformation needs to be considered alongside geometric distortion (see 
Section 5). 
 



 

Figure 8: Approximating contour from the encoded data by vertex-based ORD optimal shape 
coding framework using ADMSC for 1max D  pixel. 

Computational complexity: The overall order of computational complexity for ADMSC is the same as 

SAD, namely  BNO  for polygon-based encoding and  2
BNO  for BS encoding, though as detailed in 

[Sohel, Dooley and Karmakar 2006], ADMSC does incur a slightly higher computational time due to the 
extra operations performed in solving the distortion measurement limitation in SAD-based calculations.  
 
Operational dissimilarity between ADMSC and SAD: Given the synergistic genesis of the ADMSC 
and SAD measurement strategies, Figure 9 provides a graphical illustration of the subtle differences 
between the two techniques for contour point tb within a BS context, where the BS curve is represented as 
the concatenation of piecewise polygon-edges 1, 2 and 3. Figure 9(a) shows the distances from these 
edges using ADMSC, with qbt  being the minimum (where   is the Euclidean distance). This represents 

the final distortion at tb , while in Figure 9(b), SAD measures the distortions from either the edges or their 

extensions so the corresponding final (minimum) distortion is obt . In comparing these measurements, 

ADMSC has palpably calculated the accurate distortion whilst SAD has produced a much lower distortion 
than the actual value, which will in certain cases be erroneous. This measured distortion is compared with 
the admissible distortion to make certain the candidate BS-curve upholds this value.  
 

    
  (a)                                  (b)  

Figure 9: An illustration of the difference in distortion measures using – (a) ADMSC and (b) 
SAD for a BS-based framework. 

While ADMSC successfully solves the problem of guaranteeing consistently accurate perceptual 
distortion measurement within the ORD shape coding framework, the complexity impost is still a 
significant overhead. From the aforementioned discussions, ADMSC incurs  BNO  time for polygon-



based shape coding, but as with SAD it takes  2
BNO   for BS-based coding. In contrast, TB/DB mandates 

 2
BNO  time for both polygon and BS-based encoding. With the distortion measurement being embedded 

within the kernel of all the various shape coding algorithms, it is vital to investigate faster measurement 
approaches to ameliorate the high computational complexity. It was in this context that the DMCLP 
strategy was designed, which incurs  BNO  time for both polygonal and BS encoding. 
 
3.4. Fast distortion measurement technique using chord-length-parameterisation (DMCLP)  
 
The philosophy behind this measurement algorithm is that if there is an associated approximation point for 
each contour point, the distortion can be measured as the Euclidean distance between these two points. To 
obtain the corresponding approximated point, a BS parametric representation is used. Since a BS curve 

kQ  for a control point (CP) set  11 ,,  kkk sss  is defined by the control parameter u, for each value of u, an 
approximated point is generated. As every contour point has an associated u value, computing the 
distortion simply becomes a point-to-point distance calculation rather than finding the minimum of a 
number of edge-distortions as in SAD and ADMSC, which expedites the distortion calculation process. If 
the distortion between contour points and their corresponding curve points is less than or equal to the 
admissible distortion of the respective contour points, the curve upholds the distortion bound and is 
considered a candidate curve segment within the RD optimisation process. To determine this u, chord-
length parameterisation, which is widely used in the development of parametric curve algorithms [Farin 
1997], is applied to construct a smooth curve. For an arbitrary curve segment having start and end indices 
i and j respectively of the associated points in contour  110 ,,, 

BNbbbB  , the u values are determined 

from: 
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where tu  is associated with contour point tb  and tt bb 1  is the Euclidean distance. Once tu is obtained, a 

BS point corresponding to tb can be located from:  
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When a BS curve point is generated using tu , the peak distortion at tb is the Euclidean distance between 
these two points, so it is then only required to ensure the contour point upholds the admissible distortion. 
Similarly for polygon-based encoding, a corresponding approximating point for each contour point can be 
obtained from:  

   11  ktkt susuq   (10)  

which is subsequently used in the distortion calculation.  
 
Computationally DMCLP is faster than both SAD and ADMSC for BS-based encoding, while its time 
complexity is equivalent to SAD and ADMSC for polygon-based coding [Sohel, Karmakar and Dooley 
2007]. It however provides a more relaxed measure of the true distortion by virtue of relying on only the 
distance between an approximated point and its associated contour point. This can lead to over-estimation 
of the actual distortion with extra bits being incurred to encode a contour and an ensuing impact on RD 



performance. DMCLP’s accuracy is still superior to both SAD and DB/TB since both these strategies 
ignore certain distortion components (see Sections 3.1 and 3.2) and so do not always correctly uphold the 
peak distortion. Conversely, DMCLP is bounded within the admissible distortion limit.  
 
Operational dissimilarity between ADMSC and DMCLP: ADMSC measures the distortion for a 
particular contour point using edge-distortion criteria both in polygon and BS-based coding. For polygon-
based coding this is obvious while for BS encoding, it measures the edge-distortion from the piecewise 
edges that form the BS curve. Conversely for both polygon and BS cases, DMCLP employs point-to-point 
Euclidean distance calculations, with an approximating point corresponding to each contour point 
generated, with the distance between these points considered as the distortion. 

      

                            (a)                   (b) 

Figure 10: Example illustrating the key difference between – (a) ADMSC and (b) DMCLP 
distortion metrics for a BS-based framework. 

Figure 10 illustrates the central difference between the DMCLP and ADMSC measuring techniques in a 
BS-based framework for the CP set 11 ,,  kkk sss . In Figure 10(a), the BS curve generates a series of 

piecewise edges (1, 2, 3, 4, 5, 6), with the shortest distance of these polygons from the contour point tb  

being determined and the minimum amongst these ( 3tb in the example) designated as the final distortion. 
In contrast for  DMCLP, each associated contour point has its own u value, so there is no need to generate 
the complete BS curve (only the corresponding BS point q), so the distortion for this measurement 
technique is qbt (see Figure 10(b)). 

DMCLP employs chord-length parameterisation to determine a u value for every contour point, which is 
subsequently used to obtain the approximating BS (or polygon) point for that contour point. Crucially the 
location of these approximating points depends not only on u, but also on the distance between 
consecutive CP, with the concentration of these points being greater in the area close to the smaller control 
polygon-edge than the larger edge. In Figure 11 for instance, the density of BS points is higher in the area 
close to edge 1kk ss than in the vicinity of edge 1kk ss . The 17th point of both the contour and 
approximating BS-curve has been encircled in Figure 11, from which it is evident the distortion at this 
particular contour point with respect to the entire approximating BS curve, is much lower than the point-
to-point distance determined by DMCLP. This demonstrates the intrinsically relaxed nature of the 
DMCLP measure in the sense that it does not calculate the minimum distortion, so despite producing a 
smaller distortion this particular CP set will be rejected leading to a higher bit-rate requirement. To 
address this restriction, the next section presents a recently developed distortion metric that uses arc-
length parameterisation (ALP).   
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Figure 11: Example showing the measurement problem with the DMCLP. 
 
3.5. Distortion measurement technique using arc-length-parameterisation (DMALP)  
 
The rationale of ALP is to define a set of weights for the parametric curve coefficients so the generated 
curve points obtain unit speed, that is, the distances between two consecutive curve points are equal 
[Farouki 1997]. If the number of BS points, i.e., the number of u steps equals the number of contour 
points, then a BS point lies within the vicinity of the corresponding contour point. The ALP process 
involves two key steps. In the first, the value of u is determined using a modified CLP. The approach 
formalised in (8) assumes u monotonically increases with t though in many cases, while the contour point 
index is incremented, there is no commensurate advancement of the position of the contour point with 
respect to the baseline (the line joining the two end CPs). The corollary is that while the contour point has 
not moved the corresponding BS point has, leading to an over-estimation of the true distortion. This 
scenario is evinced in Figure 12, where the 3rd contour point and its corresponding BS point appear very 
close. For the next few contour points there is little advancement in the direction of baseline, while the BS 
points have moved away so that for instance, for the 6th contour point and its corresponding BS point (both 
encircled), the distance between them has now become significant. 
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Figure 12: Illustration of the monotonic incremental problem associated with DMCLP. 



To resolve this inadequacy it is essential to consider the projection of the distance between tt bb ,1  on the 

baseline, as an alternative to the geometric distance. If  is the angle between the baseline and edge 

tt bb ,1 , then this projection will be   cos1  tt bbdistance . Since a 1-pixel neighbourhood (see Figure 
13) is employed for the contour chain, if the angle between the baseline and the global coordinate is 
translated to the same pixel grid, then depending on  , the value of tt bb 1 will be either 0,1 or -1. As 

illustrated in Figure 13, if 4
  then the distance is 2 and 11  tt bb . If the angle is either 2

  or 

2
3 then 01  tt bb , while for either 0135 or 2250, 11  tt bb .  

 

 
 

Figure 13: Illustration of the value of tt bb 1 .  

 
In the second module, ALP is performed to obtain the weights w so that an equal distance between the CP 
is achieved. As detailed in [Farouki 1997], for a quadratic curve, ALP can be obtained as follows:  
 

  kkkk ssssQ   1
22

11 36  and  

  kkkk ssssQ   1
22

10 36    (11) 

 
where kkk sss  1 . 

 So   1
01min /1


 QQ         (12) 

Hence, the optimal parameterisation coefficients are  
 

     jj
jw  2

minmin1   for .2,1,0j    (13) 

 
The combination of these weights and respective value of u, is employed to calculate the approximating 
point corresponding to a contour point. The distortion is then calculated using the point-to-point distance 
between them.  
 
Computational complexity: The overall computational complexity for DMALP in the worst case is 
 BNO , which is exactly the same as DMCLP, and one degree lower than all other existing distortion 

measurement techniques for BS-based encoding. The calculation of the reparameterisation coefficients 
does mean however, the time complexity of DMALP is slightly higher than DMCLP.  
 
 
 
 



4. Results and analysis 
 

All experiments were implemented in Matlab on a 2.8 GHz (Giga Hertz) Pentium-4 processor, with 512 
Megabytes of random access memory under a Windows XP operating system and applied to a number of 
natural and synthetically generated shapes and standard video test sequences having various spatial and 
temporal resolutions. The specifications of the different standard test sequences used in this paper are 
summarised in Table 1. 

Table 1: Test sequence specifications 

Video sequence Format Spatial resolution (pixels) Number of frames  

MissAmerica.qcif QCIF 176   144 100 

Akiyo.qcif QCIF 176   144 300 

Bream.qcif QCIF 176   144 300 

Kids.sif SIF 352   240 100 

Stefan.sif SIF 352   240 450 

Kids.sdtv SDTV 720   486 300 

Stefan.sdtv SDTV 720   480 300 

 

To assess the comparative performance of the different geometric distortion measurement techniques, the 
vertex-based ORD optimal shape coding framework [Katsaggelos, Kondi, Meier, Ostermann and Schuster 
1998] was employed as the test bed. The reasons for this were twofold: firstly it has been proven ORD is 
optimal and secondly, it provides an ideal application sphere for geometric distortion. For presentational 
clarity, this section will concentrate on analysing the results for the Neck region of the 31st frame of the 
MissAmerica.qcif sequence, with results for the other sequences being summarised in tabular form. To 
clarify the nomenclature adopted, the following two-parameter notation is used:  

Approximation type–Distortion measurement type 

Approximation type refers to either polygon or quadratic BS-based approximation while Distortion 
measurement type refers to the choice of SAD, TB (or DB), ADMSC, DMCLP and DMALP, so for 
instance,  Polygon–ADMSC means that the algorithm is based on a polygon approximation with ADMSC 
being the distortion measurement technique.  
 
The first set of experiments concentrated on peak distortion measurement for different approximation-
measurement pairings, for a prescribed set of admissible values. The various results for the admissible 
distortion setting 2,2 minmax  TT  pixels are displayed in Figures 14(a)-(j), while the corresponding 
numerical results also with other selected distortion pairings are summarised in Table 2. Figure 14 reveals 
that in general, all algorithms produced similar perceptual shapes with the notable exceptions of Polygon–
SAD, B-spline–SAD, Polygon–TB and B-spline–TB, where as highlighted by the rectangular boxes, the 
distortion was greater than the prescribed peak value. The selection of maxT = minT  was deliberate so all 
contour points would have identical admissible distortions, as well as to highlight the measurement 
problems inherent in SAD and TB. Furthermore, while both SAD and TB failed to sustain the peak 
admissible distortion, in contrast DMCLP, ADMSC, DMALP and ADMA all consistently maintained a 
bounded peak distortion.  
 



  
(a) Polygon–SAD (b) B-spline–SAD 
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(c) Polygon–TB (or DB) (d) B-spline–TB (or DB) 
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(e) Polygon–ADMSC (f) B-spline–ADMSC 
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(g) Polygon–DMCLP (h) B-spline–DMCLP 
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(i) Polygon–DMALP (j) B-spline–DMALP 
Figure 14: Results for the Neck region of the 31st frame of the MissAmerica.qcif sequence with 

2max T  and 2min T  pixels (Legend – solid line: approximating contour; dashed line: original 
contour; asterisk: CP). 

 

Table 2: Bit-rate (bits) requirements (with obtained distortion in parenthesis whenever it is different 
from the admissible peak distortion) for the Neck region of the 31st frame of MissAmerica.qcif with 
different admissible distortion pairs ( maxT & minT  pixels) using various ORD optimal shape-coding 
algorithms.  
 
Admissible     
  distortion  

1max T ,

1min T  

2max T ,

1min T  

2max T ,

2min T  

3max T ,

1min T  

3max T ,

2min T  

Algorithms  Bit-rate Bit-rate Bit-rate Bit-rate Bit-rate 
Polygon–SAD 116 (1.42) 100 (2.24) 87 (2.23) 92 85 
Polygon–TB 115 (2.24) 95 (2.24) 79 (4.0) 71 (5.0) 70 (5.0) 

Polygon–ADMSC 138 109 86 86 86 
Polygon–DMCLP 146 112 93 92 88 
Polygon–DMALP 140 109 87 87 86 

B-spline–SAD 125 (2.0) 83 (2.45) 80 (5.65) 80 (7.0) 80 (8.0) 
B-spline–TB 133 (2.0) 87 (3.6) 78 (2.8) 76 (6.0) 75 (6.0) 

B-spline–ADMSC 127 100 78 78 78 
B-spline–DMCLP 132 102 78 80 (2.83) 78 
B-spline–DMALP 128 100 78 78 78 

 
 
A cursory review of the SAD and TB results in Table 2, i.e., 1,2 minmax  TT  pixels, fallaciously reveals 
they consistently mandated fewer bits for encoding, until cognisance is taken that these algorithms did not 
always uphold the admissible distortion constraint in the B-spline–SAD and B-spline–TB cases, which 
respectively generated maximum distortions of 2.45 and 3.6 pixels despite being supposedly bound to a 
peak of 2 pixels. This implies SAD and TB ignored certain parts of the shape leading to a lower bit 
requirement than ADMSC, DMCLP and DMALP-based algorithms, which in contrast, all guarantee the 
peak admissible distortion. Interestingly for 1,3 minmax  TT  pixels, B-spline–DMCLP produced a 
maximum distortion of only 2.83 pixels and so did not fully exploit the admissible distortion limit of 3 
pixels, reflecting the earlier comment over DMCLP being a more relaxed measure. From a bit-rate 
perspective, this relaxation is manifest by a negligibly small increase in the number of bits incurred for 
DMCLP-based algorithms, so with 1,3 minmax  TT  pixels the respective bit-rate requirements for B-



spline–ADMSC, B-spline–DMCLP and B-spline–DMALP are 78, 80 and 78 bits respectively. The results 
also confirm the lowest bit-rate is achieved by ADMSC which guarantees to measure the absolute 
minimum distortion.  
 
Table 3 summarises the numerical results for different combinations upon various test sequences for the 
setting 2max T , 1min T  pixels. These corroborate the same observations, namely ADMSC, DMCLP and 
DMALP always maintain the admissible distortion which is not the case for either SAD or TB, while their 
respective bit-rates are all analogous.  
  

Table 3: Average bit-rate (bits per frame) requirements (with the obtained distortion in parenthesis 
whenever it is different from the admissible peak) for the various test sequences with 2max T , 

1min T  pixels using various combinations of polygon-based algorithms. 

Algorithms Polygon–SAD Polygon–TB Polygon–
ADMSC 

Polygon–
DMCLP 

Polygon–
DMALP 

Video sequence Bit-rate Bit-rate Bit-rate Bit-rate Bit-rate 
MissAmerica.qcif 343 (3.0) 338 (3.0) 348 355 350 

Akiyo.qcif 312 (2.8) 310 (3.0) 313 320 314 
Bream.qcif 421 (3.0) 415 (3.0) 421 430 422 

Kids.sif 1592 1593 1593 1600 1595 
Stefan.sif 580 582 585 589 587 
Kids.sdtv 4500 4499 4507 4512 4510 

Stefan.sdtv 1080 1080 1085 1092 1090 
 

Table 4: CPU time (seconds) required for the Neck region of the 31st frame of the MissAmerica.qcif 
by different ORD optimal shape coding algorithms for various admissible distortion pairs ( maxT , minT  
in pixels) (the distortions produced by SAD/TB are in parentheses) 
Admissible     
  distortion  

1max T ,

1min T  

2max T ,

1min T  

2max T ,

2min T  

3max T ,

1min T  

3max T ,

2min T  

 Algorithms  Time Time Time Time Time 
Polygon–SAD 1.59 (1.42) 1.80 (2.24) 1.90 (2.23) 2.0 2.0 
Polygon–TB 4.26 (2.24) 6.03(2.24) 7.73 (4.0) 11.35 (5.0) 12.66 (5.0) 

Polygon–ADMSC 1.63 1.89 2.01 2.15 2.25 
Polygon–DMCLP 1.61 1.83 1.92 1.97 2.02 
Polygon–DMALP 1.62 1.84 1.95 1.99 2.08 

B-spline–SAD 120 (2.0) 550 (2.45) 560 (5.65) 565 (7.0) 570 (8.0) 
B-spline–TB 90.60 (2.0) 510.50 (3.6) 545.50 (2.8) 620.30 (6.0) 680.40 (6.0) 

B-spline–ADMSC 554.20 575.00 582.10 587.80 591.60 
B-spline–DMCLP 270.20 290.30 297.00 312.50 314.30 
B-spline–DMALP 271.00 291.05 298.20 313.90 315.20 

 
 
Since the computational complexity of the distortion measurement process has a direct impact on the 
shape coding framework, the next series of experiments were conducted to compare the time requirements 
incurred by the different algorithm combinations for various admissible distortion pairs. Table 4 
summarises the total central processing unit (CPU) times for these assorted implementations. For BS 



encoding, it is readily apparent that the algorithms which employ either DMCLP or DMALP as their 
distortion metric are computationally faster than their SAD, TB/DB, and ADMSC counterparts. For 
instance, with 1,3 minmax  TT  pixels, B-spline–SAD, B-spline–TB, B-spline–ADMSC, B-spline–DMCLP 
and B-spline–DMALP required 565, 620.3, 578.8, 312.5 and 313.9 secs respectively, so vindicating the 

earlier analysis that while SAD, TB and ADMSC incur  2
BNO , the cost for both DMCLP and DMALP is 

only  BNO . For polygon-based encoding, DMCLP algorithms incur less time than ADMSC-based 
techniques, while as anticipated, TB algorithms consistently required higher measurement times reflecting 

its overall  2
BNO  overhead. The recently proposed DMALP technique has a slightly higher time overhead 

than DMCLP, though it proved faster than either ADMSC or TB/DB. 
 
To establish confidence bounds for the results in Table 4, cognisance of the time variations in the different 
distortion measurement techniques needs to be made so a statistical t-test has been applied to the CPU data 
obtained from ten separate runs of each algorithm at 95% confidence intervals. The endpoints of the 
confidence intervals namely, the confidence limits (CL) and probability (p) of observing a value as either 
extreme or more extreme of the test data are summarised in Table 5, for the same shape coding algorithms 
and admissible distortion pair combinations given in Table 4. It is noteworthy to mention that the result of 
the test was always H = 1, indicating a rejection of the null hypothesis at the 5% significance level. The 
negligible p values reveal the very low probabilities of data going to the extreme of the test statistics. It 
also shows that the time results in Table 4 always fall inside the limits of the corresponding statistical 
results in Table 5. The results also further corroborate the superior computational speeds of both DMCLP 
and DMALP compared with the other distortion measurement techniques.  

Table 5: CL (secs) and p values of a t-test at confidence intervals of 95% for CPU times to encode the 
Neck region of the 31st frame of MissAmerica.qcif, for the same shape coding algorithms and 
admissible distortion pair ( maxT , minT  in pixels) combinations used in Table 4. 

Admissible     
  distortion  

1max T ,

1min T  

2max T ,

1min T  

2max T ,

2min T  

3max T ,

1min T  

3max T ,

2min T  

 Algorithms  t-test results 
Polygon–SAD CL: [1.57 1.63] 

p: 1.00e-015 
[1.77 1.83] 
1.16e-015 

[1.88 1.93] 
2.89e-016 

[1.98 2.07] 
5.18e-015 

[1.99 2.08] 
7.60e-015 

Polygon–TB [4.21 4.30] 
4.97e-018 

[6.02 6.09] 
1.77e-020 

[7.69 7.81] 
2.49e-019 

[11.32 11.40] 
4.58e-022 

[12.64 12.73] 
5.85e-022 

Polygon–ADMSC [1.61 1.67] 
6.63e-016 

[1.84 1.92] 
2.44e-015 

[1.98 2.07] 
8.03e-015 

[2.11 2.19] 
1.66e-015 

[2.23 2.30] 
5.76e-016 

Polygon–DMCLP [1.59 1.65] 
2.75e-016 

[1.83 1.89] 
1.23e-016 

[1.88 1.96] 
1.28e-014 

[1.95 2.04] 
3.65e-015 

[1.99 2.07] 
2.07e-015 

Polygon–DMALP [1.61 1.66] 
1.31e-016 

[1.83 1.89] 
1.33e-016 

[1.93 2.02] 
1.13e-014 

[1.97 2.07] 
1.12e-014 

[2.02  2.12] 
1.11e-014 

B-spline–SAD [118.8  125.4] 
4.07e-013 

[547.8  555.2] 
9.69e-020 

[558.7  565.5] 
3.54e-020 

[564.2  569.0] 
  1.57e-023 

[568.6  573.5] 
1.61e-023 

B-spline–TB [88.7  93.5] 
1.86e-014 

[508.2  513.0] 
3.86e-021 

[543.8  548.9] 
3.30e-021 

[618.9  623.5] 
  4.58e-022 

[678.7  683.1] 
1.11e-024 

B-spline–ADMSC [553.3  558.1] 
1.61e-021 

[573.9  578.5] 
7.67e-022 

[580.7  584.6] 
1.74e-022 

[586.0  589.4] 
4.23e-025 

[590.6  594.5] 
1.49e-022 

B-spline–DMCLP [269.1  273.6] 
5.81e-019 

[289.1 293.5] 
2.76e-019 

[296.0  300.0] 
6.55e-020 

[311.7  315.6] 
3.64e-020 

[313.0  317.9] 
3.34e-019 

B-spline–DMALP [269.6  273.9] 
3.85e-019 

[289.6  293.9] 
2.23e-019 

[296.2  300.1] 
7.13e-020 

[312.8  316.5] 
3.36e-020 

[313.7  319.5] 
  1.50e-018 



Table 6: Comparative chart for the various distortion measurement techniques 

Quality criteria 
 

SAD DB/TB ADMSC DMCLP DMALP 

Always reflects accurate distortion NO NO YES NO NO 

Guaranteed admissible distortion 
 

NO NO YES YES YES 

Computational time complexity for a 
polygon-based framework 

 BNO   2
BNO   BNO   BNO   BNO  

Computational complexity for a BS-
based framework 

 2
BNO   2

BNO   2
BNO   BNO   BNO  

Distortion type: peak or MS Both Peak only Both Both Both 

 
To conclude the experimental analysis, Table 6 presents a comparative summary of the key performance 
features and characteristics of the different distortion measurement algorithms examined. It confirms 
ADMSC always accurately measures the distortion and maintains the peak admissible distortion. DMCLP 
and DMALP over-estimate the distortion resulting in a higher than actual value, and though this does not 
adversely affect the preservation of the admissible distortion, it can compromise RD performance, though 
their respective bit-rate requirements are very similar. Although well-established within an ORD context, 
SAD and TB guarantee neither an accurate distortion measure nor uphold the admissible distortion. From 
a computational speed standpoint, DMCLP and DMALP are the most efficient mandating  BNO  time for 

both polygon and BS-based encoding, while DB/TB is the least efficient requiring  2
BNO . In addition, 

while DB/TB have been designed just for peak admissible distortion, SAD, ADMSC, DMCLP and 
DMALP can all successfully operate in both a peak (4) and MS (5) distortion measuring paradigm. 
 
 
5. Current Research Challenges 

 
This paper has concentrated so far upon reviewing assorted distortion metrics and geometric distortion 
measurement techniques. In this section, the attention moves towards more contemporary challenges, one 
of which is the importance of the subjective appearance of the reconstructed shape and the impact of 
structural deformation. The dynamic vertex-based shape coding framework focuses on RD optimisation, 
with the sole aim of reducing the required bit-rate for a prescribed admissible distortion and vice versa. It 
does not consider what the shape actually looks like when compressed, i.e., no account is taken of the 
perceptual structural deformation a shape may undergo during encoding. As a result, a shape may become 
deformed, such that it loses its actual structure and causes visual discrepancies, as well as recognition and 
matching problems in for example, content-based searching and retrieval applications, especially when 
shape data are highly compressed. This is evidenced in both Figure 4 and the example in Figure 15, where 
a circular shape (Figure 15(a)) is optimally encoded for a prescribed distortion shown by dotted lines, 
using just four CP. Figure 15(b) shows the reconstructed shape from the encoded information, where the 
circular shape has now become a square with significant changes of curvature/cornerity around the entire 
contour, especially at the four CP. The introduction of the term shape deformation and appropriate 
strategies to effectively quantify and integrate it within shape coding frameworks, directly attempt to 
address the challenge of how best to retain a shape’s visual structure within some prescribed perceptual 
threshold. Despite various approaches including MS distortion minimisation [Schuster and Katsaggelos 
1997], this objective has proven elusive and has not been satisfactorily resolved. 
 



 

 

 

 

 

 

 

                   (a)                                                     (b)  

Figure 15: Shape deformation – (a) a circular object shape to be encoded and (b) the reconstructed 
shape becomes a square, while still upholding the relevant admissible distortion criterion. 
 
A unified framework can be formulated to manage both shape distortion and deformation minimisation. 
One of the proposed future directions is to redefine the cost function for distortion in [Katsaggelos, Kondi, 
Meier, Ostermann and Schuster 1998] be integrating deformation information. If )( kk sR , ),( 1 kk ssr  , 

),( 1 kk ssd  , and ),( 1 kk ssw  are the number of bits required to encode up to CP ks , the bit-requirement to 

differentially encode ks with respect to 1ks , the distortion between the CPs 1ks and ks , and the cost to 

differentially encode point ks with respect to 1ks respectively, then the overall cost function can be 
recursively expressed as:  
 

 ),()()( 111 kkkkkk sswsRsR                 (14)                                                       
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Now considering shape deformation, the cost function ),( 1 kk ssw   can be redefined as:  
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   (15) 

 
where kkSD ,1  is the shape deformation caused by edge kk ss 1  and   is a positive real number which 

weights the importance of the deformation. Clearly when  =0, the normal ORD result is obtained since 
shape deformation is not considered. If R represents the smallest possible difference between the rates for 
the optimal polygon and the polygon when shape deformation is considered, then the largest feasible 
shape deformation is maxSD , and   can accordingly be selected from: 

 0
max


 

SD

R
.   (16) 

 
It needs to be emphasised the amount of extra bandwidth ( R ) available, governs the level of structure 
that can be preserved, so as R becomes larger, the corresponding shape deformation will be lower and 
vice versa, with this trade-off being directly controlled by parameter  in (16). 
 

 
6. Conclusion 
 

  



This paper has presented a contemporary review of both distortion metrics and geometric distortion 
measurement techniques. It has proven that among the gamut of different strategies developed, ADMSC 
always provides the most accurate distortion measurement, while DMCLP is computationally more 
efficient under all shape conditions with a higher-order curve based approximation, though the recently 
proposed DMALP algorithm exhibits slightly superior rate-distortion performance for comparable 
DMCLP processing speed.  
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