22 research outputs found
Genotranscriptomic meta-analysis of the Polycomb gene CBX2 in human cancers: initial evidence of an oncogenic role
Background: Polycomb group (PcG) proteins are histone modifiers known to transcriptionally silence key tumour suppressor genes in multiple human cancers. The chromobox proteins (CBX2, 4, 6, 7, and 8) are critical components of PcG-mediated repression. Four of them have been associated with tumour biology, but the role of CBX2 in cancer remains largely uncharacterised.
Methods: Addressing this issue, we conducted a comprehensive and unbiased genotranscriptomic meta-analysis of CBX2 in human cancers using the COSMIC and Oncomine databases.
Results: We discovered changes in gene expression that are suggestive of a widespread oncogenic role for CBX2. Our genetic analysis of 8013 tumours spanning 29 tissue types revealed no inactivating chromosomal aberrations and only 40 point mutations at the CBX2 locus. In contrast, the overall rate of CBX2 amplification averaged 10% in all combined neoplasms but exceeded 30% in ovarian, breast, and lung tumours. In addition, transcriptomic analyses revealed a strong tendency for increased CBX2 mRNA levels in many cancers compared with normal tissues, independently of CDKN2A/B silencing. Furthermore, CBX2 upregulation and amplification significantly correlated with metastatic progression and lower overall survival in many cancer types, particularly those of the breast.
Conclusions: Overall, we report that the molecular profile of CBX2 is suggestive of an oncogenic role. As CBX2 has never been studied in human neoplasms, our results provide the rationale to further investigate the function of CBX2 in the context of cancer cells
Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle
Even though every cell in a multicellular organism contains the same genes, the differing spatiotemporal expression of these genes determines the eventual phenotype of a cell. This means that each cell type contains a specific epigenetic program that needs to be replicated through cell divisions, along with the genome, in order to maintain cell identity. The stable inheritance of these programs throughout the cell cycle relies on several epigenetic mechanisms. In this review, DNA methylation and histone methylation by specific histone lysine methyltransferases (KMT) and the Polycomb/Trithorax proteins are considered as the primary mediators of epigenetic inheritance. In addition, non-coding RNAs and nuclear organization are implicated in the stable transfer of epigenetic information. Although most epigenetic modifications are reversible in nature, they can be stably maintained by self-recruitment of modifying protein complexes or maintenance of these complexes or structures through the cell cycle
Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll
The Mll gene is a member of the mammalian trithorax group, involved with the antagonistic Polycomb group in epigenetic regulation of homeotic genes. MLL contains a highly conserved SET domain also found in various chromatin proteins. In this study, we report that mice in which this domain was deleted by homologous recombination in ES cells (ΔSET) exhibit skeletal defects and altered transcription of particular Hox genes during development. Chromatin immunoprecipitation and bisulfite sequencing analysis on developing embryo tissues demonstrate that this change in gene expression is associated with a dramatic reduction in histone H3 Lysine 4 monomethylation and DNA methylation defects at the same Hox loci. These results establish in vivo that the major function of Mll is to act at the chromatin level to sustain the expression of selected target Hox genes during embryonic development. These observations provide previously undescribed evidence for the in vivo relationship and SET domain dependence between histone methylation and DNA methylation on MLL target genes during embryonic development
Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation
Ezh2 (Enhancer of zeste homolog 2) protein is the enzymatic component of the Polycomb repressive complex 2 (PRC2), which represses gene expression by methylating lysine 27 of histone H3 (H3K27) and regulates cell proliferation and differentiation during embryonic development. Recently, hot-spot mutations of Ezh2 were identified in diffused large B-cell lymphomas and follicular lymphomas. To investigate if tumor growth is dependent on the enzymatic activity of Ezh2, we developed a potent and selective small molecule inhibitor, EI1, which inhibits the enzymatic activity of Ezh2 through direct binding to the enzyme and competing with the methyl group donor S-Adenosyl methionine. EI1-treated cells exhibit genome-wide loss of H3K27 methylation and activation of PRC2 target genes. Furthermore, inhibition of Ezh2 by EI1 in diffused large B-cell lymphomas cells carrying the Y641 mutations results in decreased proliferation, cell cycle arrest, and apoptosis. These results provide strong validation of Ezh2 as a potential therapeutic target for the treatment of cancer