5 research outputs found

    Co-localization between the BOLD response and epileptiform discharges recorded by simultaneous intracranial EEG-fMRI at 3 T

    Get PDF
    Objectives: Simultaneous scalp EEG-fMRI can identify hemodynamic changes associated with the generation of interictal epileptiform discharges (IEDs), and it has the potential of becoming a standard, non-invasive technique for pre-surgical assessment of patients with medically intractable epilepsy. This study was designed to assess the BOLD response to focal IEDs recorded via simultaneous intracranial EEG-functional MRI (iEEG-fMRI). Methods: Twelve consecutive patients undergoing intracranial video EEG monitoring were recruited for iEEG-fMRI studies at 3 T. Depth, subdural strip, or grid electrodes were implanted according to our standard clinical protocol. Subjects underwent 10–60 min of continuous iEEG-fMRI scanning. IEDs were marked, and the most statistically significant clusters of BOLD signal were identified (Z-score 2.3, p value < 0.05). We assessed the concordance between the locations of the BOLD response and the IED. Concordance was defined as a distance <1.0 cm between the IED and BOLD response location. Negative BOLD responses were not studied in this project. Results: Nine patients (7 females) with a mean age of 31 years (range 22–56) had 11 different types of IEDs during fMR scanning. The IEDs were divided based on the location of the active electrode contact into mesial temporal, lateral temporal, and extra-temporal. Seven (5 left) mesial temporal IED types were recorded in 5 patients (110–2092 IEDs per spike location). Six of these IEDs had concordant BOLD response in the ipsilateral mesial temporal structures, <1 cm from the most active contact. One of the two subjects with left lateral temporal IEDs had BOLD responses concordant with the location of the most active contact, as well other ipsilateral and contralateral sites. Notably, the remaining two subjects with extratemporal discharges showed no BOLD signal near the active electrode contact. Conclusions: iEEG-fMRI is a feasible and low-risk method for assessment of hemodynamic changes of very focal IEDs that may not be recorded by scalp EEG. A high concordance rate between the location of the BOLD response and IEDs was seen for mesial temporal (6/7) IEDs. Significant BOLD activation was also seen in areas distant from the active electrode and these sites exhibited maximal BOLD activation in the majority of cases. This implies that iEEG-fMRI may further describe the areas involved in the generation of IEDs beyond the vicinity of the electrode(s)

    Outcome of lesional epilepsy surgery

    No full text
    BackgroundWe investigated the utility of epilepsy surgery and postoperative outcome in patients with lesional epilepsy in Iran, a relatively resource-poor setting.MethodsThis prospective longitudinal study was conducted during 2007-2017 in Kashani Comprehensive Epilepsy Center, Isfahan, Iran. Patients with a diagnosis of intractable focal epilepsy, with MRI lesions, who underwent epilepsy surgery and were followed up ≥ 24 months, were included and evaluated for postoperative outcome.ResultsA total of 214 patients, with a mean age of 26.90 ± 9.82 years (59.8% men) were studied. Complex partial seizure was the most common type of seizure (85.9%), and 54.2% of the cases had auras. Temporal lobe lesions (75.2%) and mesial temporal sclerosis (48.1%) were the most frequent etiologies. With a mean follow-up of 62.17 ± 19.33 months, 81.8% of patients became seizure-free postoperatively. Anticonvulsants were reduced in 86% of the cases and discontinued in 40.7%. In keeping with previous studies, we found that seizure freedom rates were lower among patients with longer follow-up periods.ConclusionsWe found high rates of seizure freedom after surgery in lesional epilepsy patients despite limited facilities and infrastructure; antiepileptic medications were successfully tapered in almost half of the patients. Considering the favorable outcome of epilepsy surgery in our series, we believe that it is a major treatment option, even in less resource-intensive settings, and should be encouraged. Strategies to allow larger scale utility of epilepsy surgery in such settings in the developing world and dissemination of such knowledge may be considered an urgent clinical need, given the established mortality and morbidity in refractory epilepsy

    Data_Sheet_1_Generalizability of High Frequency Oscillation Evaluations in the Ripple Band.docx

    No full text
    <p>Objective: We examined the interrater reliability and generalizability of high-frequency oscillation (HFO) visual evaluations in the ripple (80–250 Hz) band, and established a framework for the transition of HFO analysis to routine clinical care. We were interested in the interrater reliability or epoch generalizability to describe how similar the evaluations were between reviewers, and in the reviewer generalizability to represent the consistency of the internal threshold each individual reviewer.</p><p>Methods: We studied 41 adult epilepsy patients (mean age: 35.6 years) who underwent intracranial electroencephalography. A morphology detector was designed and used to detect candidate HFO events, lower-threshold events, and distractor events. These events were subsequently presented to six expert reviewers, who visually evaluated events for the presence of HFOs. Generalizability theory was used to characterize the epoch generalizability (interrater reliability) and reviewer generalizability (internal threshold consistency) of visual evaluations, as well as to project the numbers of epochs, reviewers, and datasets required to achieve strong generalizability (threshold of 0.8).</p><p>Results: The reviewer generalizability was almost perfect (0.983), indicating there were sufficient evaluations to determine the internal threshold of each reviewer. However, the interrater reliability for 6 reviewers (0.588) and pairwise interrater reliability (0.322) were both poor, indicating that the agreement of 6 reviewers is insufficient to reliably establish the presence or absence of individual HFOs. Strong interrater reliability (≥0.8) was projected as requiring a minimum of 17 reviewers, while strong reviewer generalizability could be achieved with <30 epoch evaluations per reviewer.</p><p>Significance: This study reaffirms the poor reliability of using small numbers of reviewers to identify HFOs, and projects the number of reviewers required to overcome this limitation. It also provides a set of tools which may be used for training reviewers, tracking changes to interrater reliability, and for constructing a benchmark set of epochs that can serve as a generalizable gold standard, against which other HFO detection algorithms may be compared. This study represents an important step toward the reconciliation of important but discordant findings from HFO studies undertaken with different sets of HFOs, and ultimately toward transitioning HFO analysis into a meaningful part of the clinical epilepsy workup.</p

    Image_1_Generalizability of High Frequency Oscillation Evaluations in the Ripple Band.TIFF

    No full text
    <p>Objective: We examined the interrater reliability and generalizability of high-frequency oscillation (HFO) visual evaluations in the ripple (80–250 Hz) band, and established a framework for the transition of HFO analysis to routine clinical care. We were interested in the interrater reliability or epoch generalizability to describe how similar the evaluations were between reviewers, and in the reviewer generalizability to represent the consistency of the internal threshold each individual reviewer.</p><p>Methods: We studied 41 adult epilepsy patients (mean age: 35.6 years) who underwent intracranial electroencephalography. A morphology detector was designed and used to detect candidate HFO events, lower-threshold events, and distractor events. These events were subsequently presented to six expert reviewers, who visually evaluated events for the presence of HFOs. Generalizability theory was used to characterize the epoch generalizability (interrater reliability) and reviewer generalizability (internal threshold consistency) of visual evaluations, as well as to project the numbers of epochs, reviewers, and datasets required to achieve strong generalizability (threshold of 0.8).</p><p>Results: The reviewer generalizability was almost perfect (0.983), indicating there were sufficient evaluations to determine the internal threshold of each reviewer. However, the interrater reliability for 6 reviewers (0.588) and pairwise interrater reliability (0.322) were both poor, indicating that the agreement of 6 reviewers is insufficient to reliably establish the presence or absence of individual HFOs. Strong interrater reliability (≥0.8) was projected as requiring a minimum of 17 reviewers, while strong reviewer generalizability could be achieved with <30 epoch evaluations per reviewer.</p><p>Significance: This study reaffirms the poor reliability of using small numbers of reviewers to identify HFOs, and projects the number of reviewers required to overcome this limitation. It also provides a set of tools which may be used for training reviewers, tracking changes to interrater reliability, and for constructing a benchmark set of epochs that can serve as a generalizable gold standard, against which other HFO detection algorithms may be compared. This study represents an important step toward the reconciliation of important but discordant findings from HFO studies undertaken with different sets of HFOs, and ultimately toward transitioning HFO analysis into a meaningful part of the clinical epilepsy workup.</p
    corecore