4 research outputs found

    MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches

    Get PDF
    The long-lasting inadequacy of existing treatments for prostate cancer has led to increasing efforts for developing novel therapies for this disease. MicroRNAs (miRNAs) are believed to have considerable therapeutic potential due to their role in regulating gene expression and cellular pathways. Identifying miRNAs that efficiently target genes and pathways is a key step in using these molecules for therapeutic purposes. Moreover, computational methods have been devised to help identify candidate miRNAs for each gene/pathway. MAPK and JAK/STAT pathways are known to have essential roles in cell proliferation and neoplastic transformation in different cancers including prostate cancer. Herein, we tried to identify miRNAs that target these pathways in the context of prostate cancer as therapeutic molecules. Genes involved in these pathways were analyzed with various algorithms to identify potentially targeting miRNAs. miR-23a and miR-23b were then selected as the best potential candidates that target a higher number of genes in these pathways with greater predictive scores. We then analyzed the expression of candidate miRNAs in LNCAP and PC3 cell lines as well as prostate cancer clinical samples. miR-23a and miR-23b showed a significant downregulation in cell line and tissue samples, a finding which is consistent with overactivation of these pathways in prostate cancer. In addition, we overexpressed miR-23a and miR-23b in LNCAP and PC3 cell lines, and these two miRNAs decreased IL-6R expression which has a critical role in these pathways. These results suggest the probability of utilizing miR-23a and miR-23b as therapeutic targets for the treatment of prostate cancer. © 2015, International Society of Oncology and BioMarkers (ISOBM)

    The effect of oral melatonin supplementation on MT-ATP6 gene expression and IVF outcomes in Iranian infertile couples: a nonrandomized controlled trial

    No full text
    This study aims to evaluate the effect of melatonin supplementation on the outcomes of in vitro fertilization (IVF) and mitochondrial adenosine triphosphate production (MT-ATP6) gene expression in Iranian infertile couples. A single-blind nonrandomized controlled trial was conducted, recruiting 90 infertile couples who underwent IVF at an infertility center in Tehran, Iran. Patients who were assigned to the intervention group received melatonin as a supplementation to the standard controlled ovarian stimulation (COS). The control group received a COS protocol only. Primary outcome was the mRNA level of the MT-ATP6 gene in cumulus cells of ovarian follicles. Secondary outcomes were the mean number of mature oocytes retrieved, the embryo quality, and biochemical and clinical pregnancy rates. The mRNA level of the MT-ATP6 gene in cumulus cells between intervention and control groups was not statistically different (0.931 vs.1; P � 0.05). The mean number of poor-quality embryos was significantly lower in the intervention group than that in the control group (0.27 vs. 0.80; P = 0.028). The biochemical and clinical pregnancy rates were higher in the intervention group (24 vs. 14, P = 0.089, and 14 vs. 7, P = 0.302, respectively); however, the difference was not significant. Melatonin supplementation did not increase the odds of clinical pregnancy and the number of mature oocytes retrieved, but significantly reduced the number of low-quality embryos. More extensive studies focusing on the level of MT-ATP6 gene expression in the oocyte or blastomere cells may further elucidate the effect of supplementation with melatonin in infertile couples who have poor clinical outcomes. Trial registration: Current Controlled Trials: IRCT2015042912307N4. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature

    Autophagy-related MicroRNAs in chronic lung diseases and lung cancer

    No full text
    Chronic lung disease has become a leading cause of death in recent years. Despite several attempts to discover and develop new therapeutic approaches, patients often suffer a poor quality of life, and are faced with an increased risk of developing lung cancer. Lung cancer often occurs as an end-stage after years of chronic lung disease. An increased understanding of the pathophysiology of chronic lung disease may be obtained from studying the role of autophagy in its initiation and progression. MicroRNAs (miRNAs) play a critical role in the modulation of autophagy, and their deregulation could be associated with the initiation and progression of several chronic lung diseases. Herein, we documented that up/down regulation of miRNAs can activate or inhibit autophagy in chronic lung diseases including lung cancer. Therefore, theses miRNAs could be a promising therapeutic tool for lung cancer specially in drug-resistance lung cancer cells. © 2020 Elsevier B.V

    Supplementary Material for: Human Unrestricted Somatic Stem Cell Administration Fails to Protect Nude Mice from Cisplatin-Induced Acute Kidney Injury

    No full text
    <p><b><i>Background:</i></b> Kidney failure is a debilitating disorder with limited treatment options. The kidney-protective effects of stem cells have been vastly investigated and promising results have been achieved with various sources of stem cells. However, in spite of beneficial effects on other disease models, the renoprotective potential of human cord blood-derived unrestricted somatic stem cells (USSC) has not been examined so far. <b><i>Methods:</i></b> In the present study, acute kidney failure was induced in female nude mice and the effect of USSC transplantation on kidney function and structure was assessed. Furthermore, the expression of some cytokine genes was examined by real-time PCR. Homing of the transplanted cells into kidneys was assessed by flow cytometry, immunohistochemistry, and real-time PCR. <b><i>Results:</i></b> USSC-conditioned medium did not attenuate the in vitro nephrotoxic effects of cisplatin. Transplantation of USSC to nude mice did not protect kidney function and was associated with worsened kidney structural damage. USSC transplantation was also associated with a decline in the renal expression of VEGF-A gene. In spite of these effects, the transplanted cells could not be detected in the kidneys by any of the exploited methods and they were mainly entrapped in the lungs. <b><i>Conclusion:</i></b> These data indicate that USSC are not suitable for cell therapy in the setting of acute kidney injury. Also, this study shows that these stem cells are able to affect damaged kidneys even if they are not homed there.</p
    corecore