16 research outputs found

    Whole Grain Products, Fish and Bilberries Alter Glucose and Lipid Metabolism in a Randomized, Controlled Trial: The Sysdimet Study

    Get PDF
    Due to the growing prevalence of type 2 diabetes, new dietary solutions are needed to help improve glucose and lipid metabolism in persons at high risk of developing the disease. Herein we investigated the effects of low-insulin-response grain products, fatty fish, and berries on glucose metabolism and plasma lipidomic profiles in persons with impaired glucose metabolism.Altogether 106 men and women with impaired glucose metabolism and with at least two other features of the metabolic syndrome were included in a 12-week parallel dietary intervention. The participants were randomized into three diet intervention groups: (1) whole grain and low postprandial insulin response grain products, fatty fish three times a week, and bilberries three portions per day (HealthyDiet group), (2) Whole grain enriched diet (WGED) group, which includes principally the same grain products as group (1), but with no change in fish or berry consumption, and (3) refined wheat breads (Control). Oral glucose tolerance, plasma fatty acids and lipidomic profiles were measured before and after the intervention. Self-reported compliance with the diets was good and the body weight remained constant. Within the HealthyDiet group two hour glucose concentration and area-under-the-curve for glucose decreased and plasma proportion of (n-3) long-chain PUFAs increased (False Discovery Rate p-values <0.05). Increases in eicosapentaenoic acid and docosahexaenoic acid associated curvilinearly with the improved insulin secretion and glucose disposal. Among the 364 characterized lipids, 25 changed significantly in the HealthyDiet group, including multiple triglycerides incorporating the long chain (n-3) PUFA.The results suggest that the diet rich in whole grain and low insulin response grain products, bilberries, and fatty fish improve glucose metabolism and alter the lipidomic profile. Therefore, such a diet may have a beneficial effect in the efforts to prevent type 2 diabetes in high risk persons.ClinicalTrials.gov NCT00573781

    An Explainable Machine Learning Pipeline for Stroke Prediction on Imbalanced Data

    No full text
    Stroke is an acute neurological dysfunction attributed to a focal injury of the central nervous system due to reduced blood flow to the brain. Nowadays, stroke is a global threat associated with premature death and huge economic consequences. Hence, there is an urgency to model the effect of several risk factors on stroke occurrence, and artificial intelligence (AI) seems to be the appropriate tool. In the present study, we aimed to (i) develop reliable machine learning (ML) prediction models for stroke disease; (ii) cope with a typical severe class imbalance problem, which is posed due to the stroke patients’ class being significantly smaller than the healthy class; and (iii) interpret the model output for understanding the decision-making mechanism. The effectiveness of the proposed ML approach was investigated in a comparative analysis with six well-known classifiers with respect to metrics that are related to both generalization capability and prediction accuracy. The best overall false-negative rate was achieved by the Multi-Layer Perceptron (MLP) classifier (18.60%). Shapley Additive Explanations (SHAP) were employed to investigate the impact of the risk factors on the prediction output. The proposed AI method could lead to the creation of advanced and effective risk stratification strategies for each stroke patient, which would allow for timely diagnosis and the right treatments. © 2022 by the authors

    Resistance training and detraining effects on flexibility performance in the elderly are intensity-dependent

    No full text
    The present investigation attempted to determine whether resistance exercise intensity affects flexibility and strength performance in the elderly following a 6-month resistance training and detraining period. Fifty-eight healthy, inactive older men (6578 yrs) were randomly assigned to 1 of 4 groups: a control group (C, n = 10), a low-intensity resistance training group (LI, n = 14, 40% of 1 repetition maximum [1RM]), a moderate-intensity resistance training group (MI, n = 12, 60% of 1RM), or a high-intensity resistance training group (HI, n = 14, 80% of 1RM). Subjects in exercise groups followed a 3 days per week whole-body (10 exercises, 3 sets per exercise) protocol for 24 weeks. Training was immediately followed by a 24-week detraining period. Strength (bench and leg press 1RM) and range of motion in trunk, elbow, knee, shoulder, and hip joints were measured at baseline and during training and detraining. Resistance training increased upper- (34% in LI, 48% in MI, and 75% in HI) and lower-body strength (38% in LI 53% in MI, and 63% in HI) in an intensity-dependent manner. Flexibility demonstrated an intensity-dependent enhancement (3-12% in LI, 6-22% in MI, and 8-28% in HI). Detraining caused significant losses in strength (70-98% in LI, 44-50% in MI, and 27-29% in HI) and flexibility (90-110% in LI, 30-71% in MI, and 23-51% in HI) in an intensity-dependent manner. Results indicate that resistance training by itself improves flexibility in the aged. However, intensities greater than 60% of 1RM are more effective in producing flexibility gains, and strength improvement with resistance training is also intensity-dependent. Detraining seems to reverse training strength and flexibility gains in the elderly in an intensity-dependent manner
    corecore