370 research outputs found

    Holographic Non-equilibrium Heating

    Full text link
    We study the holographic entanglement entropy evolution after a global sharp quench of thermal state. After the quench, the system comes to equilibrium and the temperature increases from TiT_i to TfT_f. Holographic dual of this process is provided by an injection of a thin shell of matter in the black hole background. The quantitative characteristics of the evolution depend substantially on the size of the initial black hole. We show that characteristic regimes during non-equilibrium heating do not depend on the initial temperature and are the same as in thermalization. Namely these regimes are pre-local-equilibration quadratic growth, linear growth and saturation regimes of the time evolution of the holographic entanglement entropy. We study the initial temperature dependence of quantitative characteristics of these regimes and find that the critical exponents do not depend on the temperature, meanwhile the prefactors are the functions on the temperature.Comment: v1:12 pages, 9 figures; v2:The title and abstract are slightly changed, the discussion is enlarged, the pictures are changed to make presentation more clear and refs. added , 22 pages, 4 figures; v3: typos correcte

    Have Pentaquark States Been seen?

    Full text link
    The status of the search for pentaquark baryons is reviewed in light of new results from the first two dedicated experiments from CLAS at Jefferson Lab and of new analyses from several laboratories on the Theta+(1540)Theta^+(1540). Evidence for and against two heavier pentaquark states is also discussed.Comment: Added some references, corrected typo

    The Covering Homotopy Extension Problem for Compact Transformation Groups

    Get PDF
    It is shown that the orbit space of universal (in the sense of Palais) G-spaces classifies G-spaces. Theorems on the extension of covering homotopy for G-spaces and on a homotopy representation of the isovariant category ISOV are proved

    Preserving ZZ-sets by Dranishnikov's resolution

    Get PDF
    We prove that Dranishnikov's kk-dimensional resolution dk ⁣:μkQd_k\colon \mu^k\to Q is a UVn1^{n-1}-divider of Chigogidze's kk-dimensional resolution ckc_k. This fact implies that dk1d_k^{-1} preserves ZZ-sets. A further development of the concept of UVn1^{n-1}-dividers permits us to find sufficient conditions for dk1(A)d_k^{-1}(A) to be homeomorphic to the N\"{o}beling space νk\nu^k or the universal pseudoboundary σk\sigma^k. We also obtain some other applications

    Spin and orbital angular momentum of the proton

    Full text link
    Since the announcement of the proton spin crisis by the European Muon Collaboration there has been considerable progress in unravelling the distribution of spin and orbital angular momentum within the proton. We review the current status of the problem, showing that not only have strong upper limits have been placed on the amount of polarized glue in the proton but that the experimental determination of the spin content has become much more precise. It is now clear that the origin of the discrepancy between experiment and the naive expectation of the fraction of spin carried by the quarks and anti-quarks in the proton lies in the non-perturbative structure of the proton. We explain how the features expected in a modern, relativistic and chirally symmetric description of nucleon structure naturally explain the current data. The consequences of this explanation for the presence of orbital angular momentum on quarks and gluons is reviewed and comparison made with recent results from lattice QCD and experimental data.Comment: Lectures at Aligarh University (4th DAE-BRNS Workshop on Hadron Physics, Feb 18-21, 200

    Entanglement entropy in de Sitter: no pure states for conformal matter

    Full text link
    In this paper, we consider the entanglement entropy of conformal matter for finite and semi-infinite entangling regions, as well as the formation of entanglement islands in four-dimensional de Sitter spacetime partially reduced to two dimensions. We analyze complementarity and pure state condition of the entanglement entropy of pure states and show that they never hold in the given setup. We consider two different types of Cauchy surfaces in the extended static patch and flat coordinates, correspondingly. For former, we found that entanglement entropy of a pure state is always bounded from below by a constant and never becomes zero, as required by quantum mechanics. In turn, the difference between the entropies for some region and its complement, which should be zero for a pure state, in direct calculations essentially depends on how the boundaries of these regions evolve with time. Regarding the flat coordinates, it is impossible to regularize spacelike infinity in a way that would be compatible with complementarity and pure state condition, as opposed, for instance, to two-sided Schwarzschild black hole. Finally, we discuss the information paradox in de Sitter and show that the island formula does not resolve it. Namely, we give examples of a region with a time-limited growth of entanglement entropy, for which there is no island solution, and the region, for which entanglement entropy does not grow, but the island solution exists.Comment: v1: 25 pages, 10 figures; v2: 25 pages, 10 figures, references added, notation clarifie

    Stable marriage and roommates problems with restricted edges: complexity and approximability

    Get PDF
    In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the complexity of finding a solution satisfying additional constraints on restricted pairs of agents. Restricted pairs can be either forced or forbidden. A stable solution must contain all of the forced pairs, while it must contain none of the forbidden pairs. Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a solution exists in the presence of restricted edges. If the answer is no, one might look for a solution close to optimal. Since optimality in this context means that the matching is stable and satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1) be blocked by as few as possible pairs, or (2) violate as few as possible constraints n restricted pairs. Our main theorems prove that for the (bipartite) Stable Marriage problem, case (1) leads to View the MathML source-hardness and inapproximability results, whilst case (2) can be solved in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields an View the MathML source-hard but (under some cardinality assumptions) 2-approximable problem. In the case of View the MathML source-hard problems, we also discuss polynomially solvable special cases, arising from restrictions on the lengths of the preference lists, or upper bounds on the numbers of restricted pairs

    Entanglement Islands and Infrared Anomalies in Schwarzschild Black Hole

    Full text link
    In this paper, island formation for entangling regions of finite size in the asymptotically flat eternal Schwarzschild black hole is considered. We check the complementarity property of entanglement entropy which was implicitly assumed in previous studies for semi-infinite regions. This check reveals the emergence of infrared anomalies after regularization of a Cauchy surface. A naive infrared regularization based on ``mirror symmetry'' is considered and its failure is shown. We introduce an improved regularization that gives a correct limit agreed with the semi-infinite results from previous studies. As the time evolution goes, the endpoints of a finite region compatible with the improved regularization become separated by a timelike interval. We call this phenomenon the ``Cauchy surface breaking''. Shortly before the Cauchy surface breaking, finite size configurations generate asymmetric entanglement islands in contrast to the semi-infinite case. Depending on the size of the finite regions, qualitatively new behaviour arises, such as discontinuous evolution of the entanglement entropy and the absence of island formation. Finally, we show that the island prescription does not help us to solve the information paradox for certain finite size regions.Comment: v1: 55 pages, 19 figures; v2: 57 pages, 19 figures, references added, Sec. 5 presentation improve

    Very high quality factor measured in annealed fused silica

    Full text link
    We present the results of quality factor measurements for rod samples made of fused silica. To decrease the dissipation we annealed our samples. The highest quality factor that we observed was Q=(2.03±0.01)×108Q=(2.03\pm0.01)\times10^8 for a mode at 384 Hz. This is the highest published value of QQ in fused silica measured to date.Comment: 8 pages, 2 figure
    corecore