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We prove that Dranishnikov’s k-dimensional resolution dk :μk → Q is a UVn−1-divider
of Chigogidze’s k-dimensional resolution ck . This fact implies that d−1

k preserves Z-sets.
A further development of the concept of UVn−1-dividers permits us to find sufficient
conditions for d−1

k (A) to be homeomorphic to the Nöbeling space νk or the universal
pseudoboundary σ k . We also obtain some other applications.
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1. Introduction

Dranishnikov [16] constructed for each k � 1 the map dk :μk → Q = [−1,1]ω of the k-dimensional Menger compactum
onto the Hilbert cube Q such that:

(a) dk is (k − 1)-soft, (k,k − 2)-soft and polyhedrally k-soft;
(b) d−1

k preserves AE(k)- and ANE(k)-spaces, and therefore dk is a UVk−1-map;
(c) dk is k-invertible (i.e. for each map ϕ : A → Q , dim A � k, there exists a map ϕ̃ : A → μk such that dk ◦ ϕ̃ = ϕ); and
(d) dk is k-universal with respect to maps of compacta.

In what follows we shall call a map satisfying the properties (a)–(d), Dranishnikov’s k-resolution. This map represents an
important technique of geometric topology and permits us to demonstrate the wide analogy between Menger theory and
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Q -manifold theory. For example, with its help the Triangulation and Stability Theorems in the Menger manifold theory
were formulated and proved in [16].

On the other hand, Dranishnikov’s resolution is by its properties the finite-dimensional analogue of the projection
d : Q ∼= Q × Q → Q of the product onto factor with the exception of being k-soft. It is clear that the more properties
of Dranishnikov’s resolution will be found the more convenient instrument it will become.

In the sequel we shall call a k-soft map ck :νk → Q , k � 0, of the k-dimensional Nöbeling space onto the Hilbert cube
k-universal with respect to maps of Polish spaces Chigogidze’s k-resolution [11]. This map, is a bridge between the Nöbeling
and Hilbert (l2-) manifold theories and possesses properties which are every bit as remarkable as those of Dranishnikov’s
resolution (the discussion on its uniqueness is put in the Epilogue). The opinion to consider ck as the finite-dimensional
analogue of the projection c : l2 ∼= Q × (−1,1)ω → Q is justified to a greater degree than in the case of Dranishnikov’s
resolution.

The investigation of interconnection between these two resolutions was initiated in [7] and it was established that
Chigogidze’s resolution is densely contained in Dranishnikov’s resolution, i.e. that there exists an embedding ik :νk ↪→ μk

such that ck = dk�νk and Clνk = μk . This result is in complete accordance with the infinite-dimensional situation: c = d�l2
and Cl l2 = Q for the natural embedding i : l2 ∼= Q × (−1,1)ω ↪→ Q .

However, while most of the useful properties of these infinite-dimensional objects are evident (for instance, that i is
a UV-map), all new properties of its finite-dimensional analogues are established with excessive difficulties, especially since
dk fails to be k-soft. The aim of the present paper is to make a definite progress towards the investigation of the finite-
dimensional resolutions. Our main result is:

Theorem 1.1. For each k � 1 there exists Dranishnikov’s resolution δk :μk → Q which is a UVk−1-divider of Chigogidze’s resolution
χk :νk → Q , i.e. there exists a UVk−1-embedding ik :νk ↪→ μk such that χk = δk�νk and Clνk = μk.

The proof of this central theorem is based on a careful analysis of the concept of the UVk−1-dividers, which may in fact,
be considered as the other purpose of this paper. In particular, we find a piecewise linear version of Theorem 1.1 which is
a crucial ingredient of its proof.

Theorem 1.2. Let P be a compact polyhedron with the triangulation L and k � 1. Then there exist an ANE-compactum D and maps
p : D → P and q : D → P (k) such that:

(1) p is a k-conservatively soft; and
(2) p is a UVk−1-divider of a k-soft map.

Remark 1.3. It will follow directly from the proof of Theorem 1.2 that

(3) q is p−1(L ◦ L)-map where L ◦ L is the star of L with respect to L.

Theorem 1.1 implies several important results. Since the passing to the preimage with respect to an n-soft map preserves
Zn-sets, as it does also with respect to a UVk−1-divider of Chigogidze’s resolution χk (see Proposition 3.4), Dranishnikov’s
resolution does preserves Z -sets.

Theorem 1.4. For each k � 1 there exists Dranishnikov’s resolution δk :μk → Q such that (δk)
−1(F ) ⊂Z μk as soon as F ⊂Zk Q .

Of course, this intriguing fact will play an important role in the theory of Menger manifolds. It should also be remarked
that this fact was conjectured for a long time (see [11,17]) and it was erroneously claimed to be false [12].

Next, we find sufficient conditions for the preimage δ−1
k (Z) of Z ⊂ Q to be homeomorphic to the Nöbeling space νk or

universal pseudoboundary σ k .

Theorem 1.5. For each k � 1 there exists Dranishnikov’s resolution δk :μk → Q such that for each Z ∈ AE(k), Z ↪→ Q ∈ UVk−1 , the
following holds:

(4) δ−1
k (Z) ∼= νk as soon as Z is topologically complete, strongly k-universal with respect to Polish spaces;

(5) δ−1
k (Z) ∼= σ k as soon as Z is σ -compact, discretely Ik-approximated and strongly k-universal with respect to compacta.

Theorem 1.5 implies that δ−1
k ((−1,1)ω) ∼= νk and δ−1

k (Q \ (−1,1)ω) ∼= σ k which is the affirmative solution of Prob-
lem 612 from [15].
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2. Preliminaries

Throughout this paper we shall assume all spaces to be separable complete metric and all maps to be continuous, if they do
not arise as a result of some constructions and their properties should be established in the process of proof. The set of all
open covers of the space X is denoted by cov X . We will use N(A;ω) to denote the neighborhood

⋃{U | U ∈ ω, U ∩ A 	= ∅}
of A ⊂ X with respect to ω ∈ cov X ; ω′ ◦ ω � {N(A;ω) | A ∈ ω′} – the star of a cover ω′ with respect to ω (we use the
sign � for introducing new objects to the left of it). The body

⋃
ω of a system of sets ω is the set

⋃{U | U ∈ ω}. We say
that the embedding A ⊂ B is strong and write A � B if Cl A ⊂ Int B .

The refinement of the cover ω in ω1 is denoted by ω ≺ ω1. If f , g : X → Y are maps, and δ is a family of subsets

of Y , then the δ-closeness of f to g (briefly, dist( f , g) ≺ δ or f
δ∼ g) means that if f (x) 	= g(x), then { f (x), g(x)} ⊂ W ∈ δ.

The restriction of a map f onto a subset A is denoted by f �A or simply f � if there is no ambiguity about A. Since f
is an extension of g = f �A , we write this as f = ext(g). If δ > 0 is a number, then δ-closeness of f to g is denoted by
dist( f , g) < δ, as in the case of covers. We denote the distance d(x, y) between points x, y ∈ X of metric space (X,d) as
dist(x, y) if there is no confusion.

Let us introduce a series of notions concerned with the extension of partial maps, i.e. maps given on closed subspaces of

a metric space [18]. If an arbitrary partial map Z ←↩ A
φ−→ X , dim Z � k, k � ∞, can be extended on the entire space Z [on

some neighborhood of A], then X is called an absolute [neighborhood] extensor in dimension k, X ∈ A[N]E(k). If k = ∞, then
the notion of absolute [neighborhood] extensor (X ∈ A[N]E) arises. By the Kuratowski–Dugundji Theorem [18], the property
of extendability in finite dimension correlates with the connectivity and the local connectivity of the space: X ∈ AE(k) ⇔
X ∈ Ck−1& LCk−1.

The problem of extension of partially defined morphisms has a categorical character. In the category of maps having
a fixed target Y the problem of extension of morphisms is known as the problem of extension of a partial lift to the global
lift. For a given map f : X → Y , the partial lift of the map ψ : Z → Y with respect to f is the map ϕ : A → X which is defined
on the closed subset A ⊂ Z and which makes the following diagram commutative:

A
ϕ

i

X

f

Z
ψ

Y

A partial lift ϕ of the map ψ is extended to a global (local) lift with respect to f if there exists a global (local) extension of
ϕ : Z → X which is the lift of ψ . Thus, the problem of global lifting consists in the splitting of the square diagram above by
the map ϕ̂ into two triangular commutative diagrams.

Recall that a map f is called soft (locally soft) with respect to pair (Z , A), if any partial lift φ : A → X (with respect to f )
of any map ψ : Z → Y can be extended to the global (local) lift. The collection S( f ) of all pairs (Z , A) for which f is soft
will be called a softness envelope of the map f . Note that if |Y | = 1, then the problem of extension of lifts is transformed
into the problem of extension of maps.

Let C be a class of pairs (Z , A) in which A ⊂ Z is a closed subset. The map f is called C-soft (locally C-soft) if it is
soft (locally soft) with respect to all pairs (Z , A) from C. Along this line, we can introduce the notions of (n,k)-softness
(C = {(Z , A) | dim Z � n, dim A � k}), polyhedral softness (C = {(Z , A) | Z , A are polyhedra, and dim Z � n}). We denote the
class of (n,n)-soft maps, or briefly, n-soft maps by Sn . If S( f ) contains all pairs (Z ×[0,1], Z ×{0}), where dim Z � n, then
f is called a Hurewicz n-fibration. The following assertion is well known [18]:

Proposition 2.1. Let Y ∈ ANE(n). Then for each ε ∈ cov Y there exists δ ∈ cov Y , δ ≺ ε such that for every closed subspace A ⊂ W ,
dim W � n, and also for all maps α̂ : W → Y and β : A → Y such that dist(α̂�A, β) ≺ δ, there exists an extension β̂ : W → Y ,
β̂�A = β , such that dist(α̂, β̂) ≺ ε.

We say that the family L of subsets in metric space Y is an equi-LCn−1-family provided that L consists of closed subsets
in the body

⋃
L and for any x ∈ ⋃

L and ε > 0 there exists δ > 0 such that any map φ : Sk → N(x; δ) ∩ L, L ∈ L and k < n,
defined on the boundary of the ball Bk+1, is extended to the map φ̂ : Bk+1 → N(x;ε) ∩ L.

The local n-softness of the surjective open map f : Y → Z where Y is complete metric space, by the Michael Selection
Theorem [20], is equivalent to { f −1(y)} ∈ equi-LCn−1. The following assertion is a corollary of the filtered finite-dimensional
selection theorem [20] which is in turn a far reaching generalization of the Michael Selection Theorem.

Theorem 2.2. Let f : Y → Z be a complete locally k-soft surjective map of metric spaces, A ⊂ Y and B ⊂ Z closed subsets such
that f (A) = B and f �A : A → B is a homeomorphism. Then for each neighborhood Yk ⊂ Y of A there exist a decreasing sequence
Yk ⊃ Yk−1 ⊃ · · · ⊃ Y0 of open neighborhoods of A and a neighborhood Z0 ⊂ f (Y0) of B in Z such that

(a) The embedding Yi ∩ f −1(z) ↪→ Yi+1 ∩ f −1(z) is (k − 1)-aspherical for each z ∈ Z0 and for each 0 � i � k (i.e. this embedding
induces trivial homomorphism of homotopy groups πi , i � k − 1);

(b) For each map ψ : W → Z0 of k-dimensional metric space W there exists a lift ψ̃ : W → Cl Yk of ψ with respect to f .
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In the sequel we need the following easy consequence of Theorem 2.2 the direct proof of which is rather cumbersome.

Proposition 2.3. Let f : Y → Z be a locally k-soft complete surjective map of metric spaces. Then for each map α : W → Y of
k-dimensional metric space W and for each function ε : W → (0,1) there exists a function δ : W → (0,1) such that for each
map β : W → Z with dist( f (α(w)), β(w)) < δ(w), w ∈ W , there exists a lift β̃ : W → Y of β with respect to f such that
dist(α(w), β̃(w)) < ε(w), w ∈ W .

We say that a dense map f : X → Y (i.e. f (X) is dense in Y ) from ANE(k)-space X into Y is:

(1) A UVk−1-map (briefly, f ∈ UVk−1) if for each neighborhood U (y), y ∈ Y , there exists a neighborhood V (y) such that the
embedding f −1(V (y)) ↪→ f −1(U (y)) is (k − 1)-aspherical; and

(2) The map f is approximately polyhedrally k-soft if for every ε > 0 there exists δ > 0 such that for every k-dimensional
compact polyhedral pair (W , A) and for all maps ϕ : A → X and ψ : W → Y with dist(ψ, f ◦ ϕ) < δ, there exists an
extension ϕ̂ : W → X of ϕ satisfying dist(ψ, f ◦ ϕ̂) < ε.

In general, a UVk−1-preimage of ANE(k)-space is not an ANE(k)-space. But there exists one important exception:

(3) If X0 ↪→ X ∈ UVk−1 and X ∈ ANE(k), then X0 ∈ ANE(k).

The following criterion is well known (see [19]):

Proposition 2.4. If f ∈ UVk−1 , then f is an approximately polyhedrally k-soft map. Conversely, if f is an approximately polyhedrally
k-soft map and Y ∈ ANE(k), then f ∈ UVk−1 .

From Proposition 2.4 we deduce several known properties of UVk−1-maps.

Proposition 2.5. If f : X → Y ∈ UVk−1 and Y is complete, then Y ∈ ANE(k). If additionally X ∈ AE(k), then Y ∈ AE(k).

Proposition 2.6. Let g : X → Y be a UVk−1-map, and let f : X → Z and h : Y → Z be maps between ANE(k)-spaces such that
f = h ◦ g. Then f ∈ UVk−1 if and only if h ∈ UVk−1 .

Proposition 2.7. If f : X → Y is a UVk−1-map of ANE(k)-spaces, and f −1(Y0) ↪→ X ∈ UVk−1 , then f � : f −1(Y0) → Y0 ∈ UVk−1 .

Recall that the fiberwise product W = X f ×g Z of X and Z with respect to f : X → Y and g : Z → Y is the subset
{(x, z) | f (x) = g(z)} ⊂ X × Z . The projections of X × Z onto Z and onto X generate the maps f ′ : W → Z and g′ : W → X
which are called the projections parallel f and g , respectively. We write it f ′ ‖ f and g′ ‖ g for brevity.

Several properties of maps are inherited by parallel projections. For instance, the softness envelope S( f ) is contained
in S( f ′). The following is easily established:

(c) If f is n-soft and g ∈ UVn−1, then f ′ ‖ f is n-soft, and g′ ‖ g is a UVn−1-map.

In [7] we described the reasonable part of softness envelope of Dranishnikov’s resolution dn .

Definition 2.8. The pair (Z , A) is called n-conservative if any partial lift φ : A → Sn × Sn of ψ : Z → Sn with respect to the
projection pr2 : Sn × Sn → Sn of the n-spheres product onto the second factor is extended to the global lift φ̂ : Z → Sn × Sn

of ψ such that (φ̂)−1(Diag) ⊂ A.

The map f : X → Y which is soft with respect to all n-dimensional n-conservative pairs (Z , A) is called n-conservatively
soft. Dranishnikov’s resolution dn is n-conservatively soft [7]. This, in turn, implies all known soft properties of dn .

Definition 2.9. The Polish space X (i.e. complete and separable) is called strongly k-universal with respect to Polish spaces if any
map φ : Z → X of Polish space Z , dim Z � k is arbitrarily closely approximated by closed embedding.

Definition 2.10. Let {Ik
i } be a countable family of k-dimensional disks, and D – their discrete union

∐{Ik
i | 1 � i < ∞}. The

space X is called discretely Ik-approximated if any map φ : D → X is arbitrarily closely approximated by a map φ̃ : D → X 1

with discrete {φ̃(Ik
i ) | 1 � i < ∞}.

1 This means that for each function ε : X → (0,1) there exists a map φ̃ such that dist(φ̃(d),φ(d)) < ε(φ(d)) for all d ∈ D .
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For Polish ANE(k)-space the property of strong k-universality with respect to Polish spaces and discrete Ik-approximation
are equivalent [10, p. 127]. In [1–4] the following criterion for the Nöbeling space was established.

Theorem 2.11. The Polish space X of dimension k is homeomorphic to the Nöbeling space νk if and only if X is an AE(k)-space which
is strongly k-universal with respect to Polish spaces.

Let C be a class of spaces. Recall [9] that a space X is called strongly C -universal if any map f : D → X of D ∈ C , the
restriction of which on a closed subspace C ∈ C is a Z -embedding, is arbitrarily closely approximable by a Z -embedding
f ′ : D → X with f �C = f ′�C . Under the universal k-dimensional pseudoboundary we understand a Cc(k)-absorber X , where

Cc(k) means the class of all k-dimensional compacta. This means that k-dimensional σ -compact AE(k)-space X is strongly
Cc(k)-universal and discretely Ik-approximated. The paper [22] called attention to the fact that Theorem 2.11 implies the
uniqueness of the topological type of the universal k-dimensional pseudoboundary.

Theorem 2.12. ([14,1]) Any two universal k-dimensional pseudoboundaries are homeomorphic.

3. Basic properties of UVn−1-divider

By P we denote a subclass of n-soft maps of ANE(n)-spaces, P ⊂ Sn .2

Definition 3.1. A proper map h : Y → Z between ANE(n)-spaces is called

(i) A UVn−1-divider of f : X → Z if there exists a topological embedding g : X ↪→ Y ∈ UVn−1 such that f = h ◦ g (i.e.
Y0 � g(X) is dense Gδ in Y , Y0 ↪→ Y ∈ UVn−1 and f = h�Y0 ); and

(ii) A UVn−1-divider of P if h is a UVn−1-divider of some map f : X → Z ∈ P .

Our interest is basically in the UVn−1-dividers h : Y → Z of P with dim Y = n � dim Z . The first nontrivial example of a
UVn−1-divider was constructed in [13]. Prior to establishing that Dranishnikov’s resolution is a UVn−1-divider of Chigogidze’s
resolution we present their general properties. It follows from Proposition 2.6 that a UVn−1-divider h of f is UVn−1 iff
f ∈ UVn−1. Hereafter and also from P ⊂ Sn it easily follows that:

Proposition 3.2. Any UVn−1-divider of P is an open UVn−1-map between ANE(n)-spaces.

If in the definition of UVn−1-divider we restricted ourselves to compact spaces, then the conclusion of Proposition 3.2
can be essentially strengthened [19,7].

Theorem 3.3 (On division of locally n-soft maps of compact spaces). Let the locally n-soft map f : X → Z be a composition of
a UVn−1-map g : X → Y and a map h : Y → Z . If all spaces X, Y and Z are ANE(n)-compacta, then h is locally n-soft.

By Proposition 2.4, any UVn−1-map is approximately polyhedrally k-soft. On the other hand, the passing to the preimage
with respect to n-soft map preserves Zn-sets. These facts easily imply:

Proposition 3.4. If h : Y → Z is a UVn−1-divider of P , then h−1(F ) ⊂Zn Y , for each F ⊂Zn Z .

We say that the subclass P is closed with respect to

(1) Composition if for any f : X → Y ∈ P and g : Y → Z ∈ P , g ◦ f : X → Z ∈ P ; and
(2) Passing to complete preimages if for any f : X → Y ∈ P and ANE(n)-subspace Y0 ↪→ Y , f �X0 : X0 � f −1(Y0) → Y0 ∈ P .

It can be seen that the class of all n-soft strongly n-universal maps of Polish ANE(n)-spaces (which are the basic interest of
this paper) satisfies the conditions (1) and (2).

Proposition 3.5. Let P be a class which is closed both with respect to composition and passing to complete preimages. If
h1 : Y1 → Y2 is a UVn−1-divider of f1 : X1 → Y2 ∈ P , where g1 : X1 ↪→ Y1 ∈ UVn−1 , and h2 : Y2 → Y3 is a UVn−1-divider of
f2 : X2 → Y3 ∈ P , where g2 : X2 ↪→ Y2 ∈ UVn−1 , then the composition h2 ◦ h1 : Y1 → Y3 is a UVn−1-divider of the composition

X0 � X1 ∩ (h1)
−1(X2)

f1�X0−−−→ X2
f2−→ Y3 ∈ P .

2 Recall that throughout this paper all spaces (in particular, all ANE(n)-spaces) are assumed to be Polish.
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Proof. Since f1�X0 ∈ P (as the restriction of f1 onto the complete preimage X0 = ( f1)
−1(X2)) and f2 ◦ f1�X0 ∈ P (as

the composition of maps from P ), it suffices to prove that e : X0 ↪→ Y1 is a UVn−1-embedding. But the embedding
e1 : X0 ↪→ X1 ∈ UVn−1, being a parallel projection in the fiberwise product of n-soft map f1 : X1 → Y2 and UVn−1-embedding
g2 : X2 ↪→ Y2 (see 2.7(a)). Then the embedding e ∈ UVn−1, being a composition of UVn−1-maps e1 and g1. �

We give one more property of UVn−1-dividers.

Proposition 3.6. Let P be closed with respect to passing to complete preimages, and h : Y → Z be a UVn−1-divider of f : X → Z ∈ P ,
where g : X ↪→ Y ∈ UVn−1 . Then for any Z0 ↪→ Z ∈ UVn−1 the following holds:

(3) f �X0 : X0 → Z0 ∈ P where X0 � f −1(Z0) = h−1(Z0) ∩ X ;
(4) X0 ↪→ Y ∈ UVn−1;
(5) h�Y0 : Y0 → Z0 is a UVn−1-divider of f where Y0 � h−1(Z0); and
(6) Y0 ↪→ Y ∈ UVn−1 .

Proof. By the n-softness of f it follows that X0 ↪→ X ∈ UVn−1 and X0 ∈ ANE(n). Since Z ∈ ANE(n) and Z0 ↪→ Z ∈ UVn−1,
it follows by 2.3(3), that Z0 ∈ ANE(n). Then the conditions imposed on the subclass P imply that f �X0 ∈ P , hence (3) is
proved. Since X0 ↪→ X and g : X ↪→ Y ∈ UVn−1, Proposition 2.6 implies X0 ↪→ Y ∈ UVn−1 which proves (4).

The property (5) is equivalent to the following fact.

Lemma 3.7. X0 ↪→ Y0 ∈ UVn−1 .

Proof. We consider a neighborhood U ⊂ Y of y0 ∈ Y0 and a map of pairs ϕ : (Bn, Sn−1) → (U ∩ Y0, U ∩ X0). By virtue
of g ∈ UVn−1, the map ϕ can be arbitrarily closely approximated by ϕ′ : Bn → U ∩ X with ϕ′ = ϕ on Sn−1. Also, by
Z0 ↪→ Z ∈ UVn−1, the map f ◦ ϕ′ can be arbitrarily closely approximated by ψ : Bn → Z0 with ψ = f ◦ ϕ on Sn−1. And
finally, n-softness of f implies the existence of a lift ψ̃ : Bn → X0 of ψ which coincides with ϕ on Sn−1 and is arbitrarily
close to ϕ′ . �

It follows by Lemma 3.7 and Proposition 2.5 that Y0 ∈ ANE(n). Since the composition X0 ↪→ Y0 ↪→ Y is a UVn−1-
embedding it follows by 3.7 and 2.6 that Y0 ↪→ Y ∈ UVn−1. Hence (6) is proved. �

Up to the end of the section we fix an n-dimensional space Y and a UVn−1-divider h : Y → Z of an n-soft map f : X → Z
(with g : X ↪→ Y ∈ UVn−1).

Proposition 3.8. If Z is discretely In-approximated, then Y is also discretely In-approximated.

Proof. Consider maps ε : Y → (0,1) and ϕ : D → Y , where D is a countable discrete union
∐{In

i | i < ∞} of n-dimensional
cubes. Since h is proper, we can assume that ε coincides with ζ ◦ f for a sufficiently small function ζ : Z → (0,1).

Since g ∈ UVn−1, ϕ is approximated by a map ϕ′ : D → X such that dist(ϕ′,ϕ) ≺ ε ◦ϕ . Next, we approximate ψ ′ � f ◦ϕ′
sufficiently closely by a map ψ : D → Z for which the family {ψ(In

i ) | i < ∞} is discrete. By Proposition 2.3, ψ can be δ-lifted
to the map ψ̃ : D → X which is arbitrarily close to ϕ′ . It can be easily seen that the family {ψ̃(In

i )} is discrete in Y , and ψ̃ is
at the required distance from ϕ . �

The proof of Theorem 1.5 will be given in the end of Section 8, and the rest of this section presents some necessary
results for this.

Since the notions of strong n-universality with respect to Polish spaces and discrete In-approximateness are equivalent
for Polish ANE(n)-spaces, we can assert, using the criterion of the Nöbeling space νn (Theorem 2.11), that

(a) If a Polish space Z ∈ AE(n) is strongly n-universal with respect to Polish spaces and dim Y = n, then Y = h−1(Z) ∼= νn .

Proposition 3.9. Let Z be a discretely In-approximated and strongly Cc(n)-universal space, where we denote by Cc(n) the class of all
n-dimensional compacta. Then Y = h−1(Z) is strongly Cc(n)-universal.

Proof. By 3.8, Y = h−1(Z) is a discretely In-approximated space. Since any compactum in a discretely In-approximated
ANE(n)-space is a Zn-set [9], it follows that

(iii) Any compactum in Z (as well as in Y ) is a Zn-set.

Let ϕ : D → Y be a map of an n-dimensional compactum D such that its restriction onto a closed subspace C is
an embedding. Since g ∈ UVn−1, we can assume without loss of generality that ϕ(D \ C) ⊂ X . It follows from (iii) that
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(h ◦ ϕ)(C) ⊂Z Z . Therefore h ◦ ϕ can be arbitrarily closely approximated by a map ψ : D → Z such that ψ = h ◦ ϕ on C , and
ψ�D\C is an embedding whose image does not intersect (h ◦ ϕ)(C).

Since f : X → Z is n-soft, ψ�D\C can be lifted with respect to f , by Proposition 2.3, to the map ψ̃ : D \ C → X , arbitrarily
close to ϕ�D\C : D \ C → X . If ψ̃ and ϕ�D\C are sufficiently close, the map ϕ′ : D → Y , defined as ϕ′ = ϕ on C and ϕ′ = ψ̃

on D \ C , becomes continuous. It is clear that the map ϕ′ is an embedding which is arbitrarily close to ϕ . Hence the proof
is completed. �

The characterization theorem for universal pseudoboundary (Theorem 2.12) and Proposition 3.9 imply that

(b) If dim Y = n and Z ∈ AE(n) is σ -compact discretely In-approximated and strongly n-universal with respect to compact
spaces, then Y is homeomorphic to the n-dimensional universal pseudoboundary σ n .

4. Inverse limit properties of UVn−1-dividers

Definition 4.1. A map f : X → Y is called strongly n-universal with respect to Polish spaces if for each n-dimensional Polish
space Q and also for all maps ε : X → (0,1) and ϕ : Q → X there exists a closed embedding ϕ′ : Q ↪→ X ε-close to ϕ such
that f ◦ ϕ′ = f ◦ ϕ .

Definition 4.2. A map f : X → Y is called n-filled if for each map ϕ : Z → X of n-dimensional Polish space Q there exists
a closed embedding ψ : Q ↪→ X such that f ◦ ϕ = f ◦ ψ .

Note that the composition of n-soft and n-filled maps is n-filled.
The commutative diagrams Dt for t = 1,2,3, . . .

Xt+1
ηt

ft+1

Xt

ft

Zt+1
σt Zt

(Dt )

generate the map f : X � lim←−{Xt, ηt} → Z � lim←−{Zt , σt} of inverse limit of spectra. In general, n-softness (n-conservative
softness and so on) of all maps ft , σt , ηt does not imply that f possesses the corresponding property. As care should be
taken to see that the map properties are preserved by passage to the inverse limit of spectra, we introduce the following

Definition 4.3. The commutative diagram Dt possesses a property Q, if its characteristic map χt : Xt+1 → Wt into the fiberwise
product Wt � (Zt+1)σt × ft Xt , given by χt(x) = ( ft+1(x), ηt(x)) ∈ Wt , possesses Q.

Basically, we are interested in n-soft and n-filled commutative diagrams. The particular case of the following proposition
is given in [17, 2.2.4].

Proposition 4.4. Let f : X → Z be a map of inverse limit of spectra X � lim←−{Xt, ηt} and Z � lim←−{Zt , σt}, generated by commutative
diagrams Dt , t � 1. Let also the diagrams Dt , t � 1, be n-soft and n-filled, and f1 and all maps σt , t � 1, n-soft. Then the map f is
n-soft and strongly n-universal with respect to Polish spaces.

Proof. Since f is n-soft by [17, 3.4.7], we complete the proof of 4.4 as soon as the strong n-universality of f will be
established. For this purpose, pick any n-dimensional Polish space Q , any function ε : X → (0,1) assessing closeness of
maps, and any map ϕ : Q → X . Let us construct a closed embedding ϕ′ : Q ↪→ X which is ε-close to ϕ .

Note that the space X = lim←−{Xt, ηt} naturally lies in
∏{Xi | i � 1} and ϕ = (ϕ1,ϕ2, . . .), where ϕi is a map of Q into Xi .

It is clear that ηt ◦ ϕt+1 = ϕt , for all t � 1.
The open cylinder U ⊂ ∏{Xi | i � 1} with the base V ⊂ ∏{Xi | 1 � i � n} and generators {a × ∏

i>n Xi | a ∈ V }, being
intersected with X , generates the corresponding structure in X : the open cylinder U X ⊂ X , the base V X ⊂ ∏{Xi | 1 �
i � n} and the family of generators. From the definition of lim←−{Xt} it easily follows that there exists a maximal subset

Ṽ ⊂ ∏{Xi | 1 � i � n}, the intersection of which with X equals the chosen base V X :

(1) Ṽ = X1 × · · · × Xn−1 × W X , where the set W X ⊂ Xn is open (we further identify the base V X with this set W X ).

It is easy to establish the existence of the increasing sequence U X (1) � U X (2) � · · · ⊂ X of open cylindrical sets for which

(2)
⋃

U X (i) = X ;
(3) U X (2i − 1) � U X (2i) have the bases W X (2i − 1) � W X (2i) ⊂ Xni for all i � 1 (we can assume without loss of generality

that ni = i); and
(4) The map ε has small oscillation on generators of U X (i), i.e. for any x and x′ from one generator we have |ε(x)−ε(x′)| < ε(x) .
10
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Let ξi = χi ◦ ϕi+1 : Q → W i , where χi : Xi+1 → W i = (Zi+1)σi × f i Xi is a characteristic map of Dt ; A2i � ξ−1
i (Zi+1 ×

W X (2i)) ⊂ Q and A2i−1 � ξ−1
i (Zi+1 × WY (2i − 1)) ⊂ Q . Since σ ′

i ◦ χi = ηi , we have

(5) A1 � A2 � · · · ⊂ Q and
⋃

Ai = Q .

Fix a refining sequence of open covers ωi ∈ cov Q . As the characteristic map χ1 : X2 → W1 is n-soft and n-filled, there
exists a map ϕ′

2 : Q → X2 such that χ1 ◦ ϕ′
2 equals ξ1 = χ1 ◦ ϕ2, and moreover,

(†)1 ϕ′
2�Cl A1 is an ω1-map; and

(†)2 ϕ′
2 = ϕ2 outside A2 ⊂ Q .

By the same reason, there exists a map ϕ′
3 : Q → X3 such that χ2 ◦ ϕ′

3 equals ξ2 = χ2 ◦ ϕ3, and moreover,

(†)3 ϕ′
3�Cl A3 is an ω2-map; and

(†)4 ϕ′
3 = ϕ3 outside A4 ⊂ Q .

It should now be clear to the reader how to continue these constructions, a result of which are the maps {ϕ′
i | i � 1}

(for definiteness sake we suppose ϕ′
1 = ϕ1). Since ηt ◦ ϕ′

t+1 = ϕ′
t for all t � 1, we have that ϕ′ � (ϕ′

1,ϕ
′
2,ϕ

′
3, . . .) is a map

passing Q into X . It is clear that

(6) f ◦ ϕ′ = f ◦ ϕ .

Let q ∈ A2m \ A2m−2. For 1 � l � m − 1 it follows from (†)2l that

(7) ϕi(q) = ϕ′
i (q) for all i � m.

Since the oscillation of ε on generators of the cylinder U X (2m − 2) is small, ϕ(q) and ϕ′(q) are ε(ϕ(q))-close, i.e.

ϕ′ ε∼ ϕ . The straightforward check using “odd” properties {(†)2i−1} permits us to assert that ϕ′ is a closed embedding of Q
into X . �

Now we track the UVn−1-division property by a passage to inverse limit of spectra. The following auxiliary assertion
permits us to make further inductive step.

Proposition 4.5. Let the commutative diagram Et

Kt+1
θt

ht+1

Kt

ht

Zt+1
σt Zt

(Et )

(more precisely, its characteristic map) be a UVn−1-divider of an n-soft n-filled map. If σt is n-soft, ht : Kt → Zt is a UVn−1-divider of
n-soft map ft : Xt → Zt where Xt ↪→ Kt ∈ UVn−1 , then ht+1 is a UVn−1-divider of n-soft map ft+1 : Xt+1 → Zt+1 where Xt+1 ↪→
Kt+1 ∈ UVn−1 . Moreover θt(Xt+1) ⊂ Xt , and the commutative diagram Dt in which ηt � θt�Xt+1 , is n-soft and n-filled.

Proof. Let, for definiteness sake, the characteristic map χt : Kt+1 → Wt = (Zt+1)σt ×ht Kt be a UVn−1-divider of n-soft and
n-filled map r : K ′

t+1 → Wt where K ′
t+1 ↪→ Kt+1 ∈ UVn−1. We use the notation for parallel projection: σ ′

t ‖ σt and h′
t ‖ ht .

From n-softness of σt it follows that W̃t � (σ ′
t )

−1(Xt) ↪→ Wt ∈ UVn−1. From here and from Proposition 3.6 (applied to
the class P of all n-soft strongly n-universal maps of Polish ANE(n)-spaces) it easily follows that

(a) Xt+1 � θ−1
t (Xt) ∩ K ′

t+1 = χ−1
t (W̃t) ∩ K ′

t+1 ↪→ Kt+1 ∈ UVn−1; and

(b) h′
t is a UVn−1-divider of h′

t�W̃t
.

It follows by Proposition 3.5 on composition for P that the composition ht+1 = h′
t ◦ χt is a UVn−1-divider of ft+1 �

ht+1�Xt+1 : Xt+1 → Zt+1. �
From Propositions 4.4 and 4.5 one can derive the basic technical result, the further application of which for Dranish-

nikov’s resolution permits us to represent it as a UVn−1-divider of the corresponding Chigogidze’s resolution.
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Theorem 4.6. Let h : K → Z be a map of inverse limits of spectra K � lim←−{Kt , θt} and Z � lim←−{Zt , σt}, generated by commutative
diagrams Et , which are n-conservatively soft for each t � 1. Let also for each t,

(c) The map σt be n-soft;
(d) The diagram Et be a UVn−1-divider of n-soft n-filled map; and
(e) The map h1 : K1 → Z1 ∈ ANE(n) be n-conservatively soft and a UVn−1-divider of n-soft map f1 : X1 → Z1 , where X1 ↪→

K1 ∈ UVn−1 .

Then the map f : X → Z of inverse limits of spectra X � lim←−{Xt, ηt} and Z , generated by commutative diagrams Dt , t � 1, from

Proposition 4.5,3 satisfies the following properties:

(f) f is n-soft strongly n-universal with respect to Polish spaces, and X, Z are Polish ANE(n)-spaces;
(g) h is n-conservatively soft; and
(h) h is a UVn−1-divider of f .

Proof. By Proposition 4.4, the map f : X → Z is n-soft strongly n-universal with respect to Polish spaces. From n-softness
of maps σt and Z1 ∈ ANE(n) it follows that Z ∈ ANE(n), and hence X is ANE(n). The property (g) follows from [17, 3.4.7].

Since the inverse spectrum {Xt, ηt} consists of n-soft projections, and each embedding Xt ↪→ Kt , by 4.5, is UVn−1, it
follows that X ↪→ K ∈ UVn−1 which proves (h). �
5. Multivalued retraction of a ball onto its boundary

In the next two sections we outline (after [16]) the base of the construction of Dranishnikov’s resolution: a multivalued
retraction of the ball onto its boundary (going back to I.M. Kozlowski) and multivalued retraction of a polyhedron onto its
k-dimensional skeleton.

Let ∂ Bn+1 be the boundary of unit ball Bn+1, n � 1. By Bn+1
y , y ∈ ∂ Bn+1, we denote the ball of radius 3/4, tan-

gent to the sphere ∂ Bn+1 in y. It is evident that the multivalued mappings Qn+1 : ∂ Bn+1 � Bn+1, Qn+1(y) = Bn+1
y , and

Pn+1 : Bn+1 � ∂ Bn+1, Pn+1(x) = {y ∈ ∂ Bn+1 | Bn+1
y � x}, are inverse each to other. Since

(1) The restriction Pn+1 on ∂ Bn+1 is the identity, i.e. Pn+1(x) = x, for each x ∈ ∂ Bn+1,

Pn+1 is a multivalued retraction of the ball onto its boundary. It is the base of the construction of Dranishnikov’s resolution.
We list several rather easy properties of Pn+1 which will be used later:

Lemma 5.1.

(2) {x ∈ Bn+1 | Pn+1(x) = ∂ Bn+1} = 1
2 · Bn+1;

(3) Pn+1(x) � Pn+1(a · x) for all x ∈ Bn+1 \ 1
2 · Bn+1 and a < 1; and

(4) Pn+1(a · y) /� (−y), for all y ∈ ∂ Bn+1 and 1
2 < a � 1.

Next, consider the graph Dn+1 � {(y, x) | x ∈ Bn+1
y } ⊂ ∂ Bn+1 × Bn+1 of the map Qn+1. It is clear that Dn+1 and the

graph of Pn+1 are symmetric with respect to the permutation of x- and y-coordinates. By (1), ∂ Bn+1 is naturally contained
in Dn+1. Concerning the natural projections pn+1 : Dn+1 → Bn+1 and qn+1 : Dn+1 → ∂ Bn+1 of the graph Dn+1 onto its
factors, the following is known [7]:

Proposition 5.2. pn+1 is n-conservatively soft, and qn+1 is a soft retraction.

Moreover, since q−1
n+1(y) = Bn+1

y and {y} ⊂Z Bn+1
y , y ∈ ∂ Bn+1, it follows that

(5) ∂ Bn+1 ⊂ Dn+1 is a fiberwise Z -set with respect to qn+1, i.e. for each partial map Z ←↩ A
ϕ−→ Dn+1 which is the local lift

of ψ : Z → ∂ Bn+1, there exists an extension ϕ̂ : Z → Dn+1 of the map ϕ , which is a global lift of ψ , such that ϕ̂(Z \ A)

does not intersect ∂ Bn+1.

We conclude this section by studying of the UVn-division of pn+1. Let

T n �
{(

y,−1

2
· y

) ∣∣∣ y ∈ ∂ Bn+1
}

and Cn+1 � Dn+1 \ T n be an open subset Dn+1.

3 More precisely, the commutative diagram Et and the map ft (from Et−1 for t > 1) generates, by 4.5, the commutative diagram Dt , t = 1,2, . . . .
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Proposition 5.3. The map pn+1 : Dn+1 → Bn+1 is a UVn-divider of the n-soft map pn+1�Cn+1 : Cn+1 → Bn+1 .

Proof. The fact that the map pn+1�Cn+1 of complete spaces is n-soft follows from {(pn+1)
−1(x) ∩ Cn+1 | x ∈ Bn+1} ∈

equi-LCn−1.
The homotopy ht : Bn+1 → Bn+1, t ∈ I , given by ht(x) = (1 − t(1 − ‖x‖)) · x is called radial. It joins Id with h1 = ‖x‖ · x.

Consider also the continuous homotopy Ht : Dn+1 → ∂ Bn+1 × Bn+1, 0 � t � 1, given by H(y, x) = (y,ht(x)).
Finally, the property Cn+1 = Dn+1 \ T n ↪→ Dn+1 ∈ UVn−1 easily follows from the assertion given below. �

Lemma 5.4. For all t � 0, we have Ht(Dn+1) ⊂ Dn+1 , and also

(a) H0 = Id and Ht(Dn+1) ∩ T n = ∅ for all t > 0.

Proof. Since ht(x) = a · x, where a � 1, it follows by 5.1(iii) that Pn+1(x) ⊂ Pn+1(ht(x)). Hence, if y ∈ Pn+1(x), then y ∈
Pn+1(ht(x)), i.e. Ht(Dn+1) ⊂ Dn+1.

Suppose that Ht(y0, x0) ∈ T n , for some point (y0, x0) ∈ Dn+1, i.e. ht(x0) = − 1
2 · y0, where y0 ∈ ∂ Bn+1. Since ht(x0) = b · x0

where b < 1, x0 = α · (−y0) for α > 1
2 . In view of (4) we have Pn+1(x0) /� −(−y0) = y0, i.e. (y0, x0) /∈ Dn+1, a contradic-

tion. �
Fix a point (called a center) O of the relative interior rint�n+1 of a simplex. Then the dilation with center O generates

a multiplication a · x for x ∈ �n+1 and 0 � a � 1. By the antipode to y ∈ ∂�n+1 we understand the intersection of the ray
[y, O ) with ∂�n+1. Then the multiplication a · x can be extended on all x ∈ �n+1 and −1 � a � 1. If x = a · y, where
y ∈ ∂�n+1 and 0 � a � 1, then a is called the norm ‖x‖ of x.

Let θ :�n+1 → Bn+1 be a radial homeomorphism, i.e. θ(a · x) = a · θ(x), for all x ∈ �n+1 and −1 � a � 1. The conju-
gacy operation with respect to homeomorphism θ transforms all early obtained constructions for pair (Bn+1, ∂ Bn+1) into
constructions for pair (�n+1, ∂�n+1). In particular, the radial homotopy ht : Bn+1 → Bn+1 (see 5.3) passes to the radial ho-
motopy θ−1 ◦ ht ◦ θ : ∂�n+1 → ∂�n+1 which we continue to denote by ht . Since all results obtained earlier are valid also for
simplexes, in the case of simplex we will use the previous notations for the corresponding spaces and maps.

6. Multivalued retraction of a polyhedron onto its skeleton

Let k � 1 and P be a compact polyhedron of dimension m given with some triangulation L. Represent the (n + 1)-
dimensional skeleton P (n+1) , n � k, as

⋃{�n+1
i | i � 1}. By previous section, the following objects are defined for each i: the

multivalued map Pn+1(i) :�n+1
i � ∂�n+1

i , the graph Dn+1(i) ⊂ ∂�n+1
i × �n+1

i of the mapping Qn+1(i) = (Pn+1(i))−1 and

the natural projections pn+1(i) : Dn+1(i) → �n+1
i and qn+1(i) : Dn+1(i) → ∂�n+1

i of Dn+1(i) onto factors.

Since Pn+1(i) :�n+1
i � ∂�n+1

i and Pn+1( j) :�n+1
j � ∂�n+1

j for �n+1
i ∩ �n+1

j 	= ∅ agree on the common domain (where
they are identical), we have that

Dn
n+1 �

{
(an,an+1) ∈ ∂�n+1

i × �n+1
i

∣∣ (an,an+1) ∈ Dn+1(i)
}

contains in a natural manner the union of the boundaries of all simplexes �n+1
i . Also, the natural projections pn

n+1 : Dn
n+1 →

P (n+1) and qn
n+1 : Dn

n+1 → P (n) are correctly defined. The following is true:

(i) (an,an+1) ∈ Dn
n+1 and an+1 ∈ P (n) imply an = an+1.

Hence P (n) is naturally contained in Dn
n+1, and qn

n+1 is a retraction. It was known that pn
n+1 is n-conservatively soft map [7],

but qn
n+1 fails to be soft map.

We consider the increasing sequence P (s) ⊂ P (s+1) ⊂ · · · ⊂ P (t−1) ⊂ P (t) , k � s < t � m, of the skeleta of the
m-dimensional polyhedron P which generates the following objects: Ds

t � {a = (as,as+1, . . . ,at−1,at) ∈ P (s) × · · · ×
P (t−1) × P (t) | (ai,ai+1) ∈ Di

i+1, s � i < t}, the maps ps
t : Ds

t → P (t) and qs
t : Ds

t → P (s) by formulas ps
t (a) � at and qs

t (a) � as ,
respectively.

We note that the map ps
t is n-conservatively soft [7] and qs

m ◦ (ps
m)−1 is a multivalued retraction of P onto its skele-

ton P (s) . Dranishnikov proved that Ds
t ∈ ANE and formulated without proof the following plausible (and, apparently, difficult)

assertion [16, p. 124].

Conjecture 6.1. The compactum Ds
t is a polyhedron (and therefore it is an ANE).

We also do not want to spend effort on the proof of this conjecture as the basic result of the present paper does not
depend on its validity (in the case of the conjecture failure, one must draw on the Edwards Theorem and Chapman Theorem
from Q -manifold theory as it was done in [16]). But for the simplicity of the text we do assume that Ds

t is a polyhedron.
Because of this we replace Theorem 1.2 with the following assertion.
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Theorem 6.2. Let P be a compact polyhedron with the triangulation L and k � 1. Then there exist a compact polyhedron D and maps
p : D → P and q : D → P (k) such that 1.2(1)–(3) hold.

7. Synchronized Hurewich fibration and the proof of Theorem 6.2

The map qs
t : Ds

t → P (s) fails to be soft as for example it is not open. But nevertheless a weak softness property of qs
t can

be detected which will be a key moment in our arguments.

Theorem 7.1. The projection qs
t is a synchronized Hurewich fibration.

Below we explain the introduced notion.

Definition 7.2. The homotopy ϕ : X × I → P (s) is called synchronized if

(1) ϕ−1(�) = (ϕ0)
−1(�) × I , for each simplex � ⊂ P (s) .

In other words, (1) means that, if ϕ0(x) ∈ �, then ϕt(x) ∈ � for all t ∈ I .

Definition 7.3. The map f : Ds
t → P (s) is called synchronized Hurewich fibration if for each synchronized homotopy ϕ : X ×

I → P (s) and for each partial lift θ0 : X × {0} → Ds
t of ϕ0 with respect to f there exists a homotopy θ : X × I → Ds

t lifting
the homotopy ϕ such that ps

t ◦ θ : X × I → P (t) is also synchronized homotopy.

First we prove the partial case of Theorem 7.1:

Proposition 7.4. The projection qn
n+1 is a synchronized Hurewich fibration.

Then applying Proposition 7.4 several times, it can be easily proved that qs
t is also a synchronized Hurewich fibration.

Proof. Let ϕ : X × I → P (n) be a synchronized homotopy and ψ0 : X × {0} → P (n+1) a map. It is sufficient to establish that if
the map θ0 � (ϕ0,ψ0) transforms X into Dn

n+1, then there exists a synchronized homotopy ψ : X × I → P (n+1) extending ψ0
such that θ � (ϕ,ψ) is a homotopy of X into Dn

n+1.

Let P (n+1) = {�(n+1)
i | i � 1}. Consider the following subsets of X : X0 � (ψ0)

−1(P (n)) and Xi � (ψ0)
−1(�

(n+1)
i ). It is clear

that X = ⋃
Xi and

(2) Xi \ X0 ⊂ Int Xi for all i � 1.

It follows from (i) (see Section 6) that ϕ0 = ψ0 on X0. As ψ0(Xi) ⊂ �
(n+1)
i and Im(θ0) ⊂ Dn

n+1, then ϕ0(Xi) ⊂ ∂�
(n+1)
i .

Since ϕ is the synchronized homotopy, we have ϕt(Xi) ⊂ ∂�
(n+1)
i , for each t ∈ I .

Given i � 1, consider the following commutative diagram,

Dn+1(i)
q(n+1)(i)

∂�
(n+1)
i

Ai

σi

Xi × I

ϕ

in which Ai � ((Xi ∩ X0) × I) ∪ (Xi × {0}), σi = θ0 on Xi × {0} and σi = (ϕ,ϕ) on (Xi ∩ X0) × I . Since qn+1(i) is soft, there
exists an extension θi : Xi × I → Dn+1(i) of σi such that qn+1(i) ◦ θi = ϕ�Xi×I .

By Proposition 5.2, ∂�
(n+1)
i ⊂ Dn+1(i) is a fiberwise Z -set with respect to qn+1(i). Then θi can be chosen in a such

manner that

(3) θi(Xi × I \ Ai) is contained in Dn+1(i) \ ∂�
(n+1)
i (i.e. pn

n+1 ◦ θi(Xi × I \ Ai) ⊂ rint�
(n+1)
i ).

The desired homotopy θ : X × I → Dn
n+1 equals θi on Xi × I . We can check straightforwardly with help of (2) and (3)

that θ is continuous, and pn
n+1 ◦ θ is a synchronized homotopy. �

The homotopy ht : P (n+1) → P (n+1) is called radial, if its restriction on each simplex �n+1
i ⊂ P (n+1) is a radial homotopy.

It is clear that ht is identity on P (n) . Let Cn+1(i) ⊂ Dn+1(i) be an open subset taken from 5.3, and Cn
n+1 �

⋃{Cn+1(i) | i} an
open subset of Dn . The proof of the fact that
n+1



2186 S.M. Ageev et al. / Topology and its Applications 156 (2009) 2175–2188
(4) The map pn
n+1 : Dn

n+1 → P (n+1) is a UVn−1-divider of the n-soft map pn
n+1�Cn

n+1
: Cn

n+1 → P (n+1)

is performed analogously to that of Proposition 5.3 with the help of the fact given below.

Proposition 7.5. The continuous homotopy Ht : Dn
n+1 → Dn

n+1,0 � t � 1, given by H(y, x) = (y,ht(x)) transforms Dn
n+1 into Cn

n+1
for each t > 0.

By C s
t we denote an open subset {a | (ai,ai+1) ∈ C i

i+1 for all i, s � i < t} ⊂ Ds
t . The essential complement of [7] where

the k-conservative softness of ps
t was established is the following key result which proves Theorem 6.2:

Theorem 7.6. The map pk
m : Dk

m → P = P (m) is a UVk−1-divider of the k-soft map pk
m�Ck

m
: Ck

m → P .

Proof. Consider a closed subset

F = Dk
m \ Ck

m = {
a

∣∣ (ai,ai+1) /∈ C i
i+1 for some i, k � i < m

} ⊂ Dk
m

and its closed filtration Fm ⊂ Fm+1 ⊂ · · · ⊂ Fk+2 ⊂ Fk+1 = F where

Fs = {
a ∈ F

∣∣ (ai,ai+1) ∈ C i
i+1 for all i, k � i < s − 1

}
.

Lemma 7.7. The restriction pk
m�Ck

m
: Ck

m → P = P (m) is a k-soft map.

Proof. Suppose that the partial map Z ⊃ A
ϕ−→ Ck

m
pk

m−−→ P , dim Z � k, has an extension ψ : Z → P . Represent ϕ in the coor-
dinate form (ϕk,ϕk+1, . . . , ϕm) where ϕi is the map from A into P (i) . Then ϕm = ψ�A . Since pi

i+1 : C i
i+1 → P (i+1) is k-soft

for all i, we can construct, by inverse induction on m,m − 1, . . . ,k + 1, the maps ψm = ψ,ψm−1, . . . ,ψk+1 from Z into P (i)

such that ϕi = ψi�A and (ψi+1,ψi) ∈ C i
i+1 for all i. In view of pk

m ◦ ϕ̂ = ψ it is clear that ϕ̂ � (ψk,ψk+1, . . . ,ψm) : Z → Ck
m

is the desired extension of ψ . �
To complete the proof of Theorem 7.6 and therefore Theorem 6.2 it is sufficient to show that Ck

m ↪→ Dk
m ∈ UVk−1,

i.e. each map ϕ : A → Dk
m of a compactum A,dim A � k, is arbitrarily closely approximable by a map which does not

intersect F . Let ht : P (m) → P (m) be a radial homotopy and Ht : Dk
m → Dk

m a homotopy given by Ht(ak,ak+1, . . . ,am−1,am) =
(ak,ak+1, . . . ,am−1,ht(am)). It is clear that the homotopy Ht ◦ ϕ removes A from Fm .

Taking this remark into account, it is sufficient to show that if ϕ(A) ∩ Fs+1 = ∅, k � s < m, then there exists a map
ϕ′ : A → Dk

m arbitrarily close to ϕ such that ϕ′(A) ∩ Fs = ∅. Again represent ϕ in the coordinate form (ϕk,ϕk+1, . . . , ϕm),
where ϕi is the map from A into P (i) . Let ht : P (s) → P (s) be a radial homotopy. Then Ψ s

t � ht ◦ ϕs : A → P (s) , 0 � t � 1, is
a synchronized homotopy.

The final accord sounds due to Theorem 7.1: the map qs
m : Ds

m → P (s) , qs
m(a) = as , is a synchronized Hurewich fibra-

tion. Therefore there exist synchronized homotopies Ψ s+1
t ,Ψ s+2

t , . . . ,Ψ m
t from A into P (s+1), P (s+2), . . . , P (m) such that the

formula Ψt � (Ψ s
t ,Ψ s+1

t ,Ψ s+2
t , . . . ,Ψ m

t ) defines the homotopy from A into Ds
m .

We take

(ϕk,ϕk+1, . . . , ϕs−1,Ψt) = (
ϕk,ϕk+1, . . . , ϕs−1,Ψ

s
t ,Ψ s+1

t ,Ψ s+2
t , . . . ,Ψ m

t

)
as a homotopy Φt : A → Dk

m removing A from Fs . Since (ϕs−1,Ψ
s

t )(A) ⊂ Ds−1
s , for each t � 0, we easily deduce that

Φt(A) ⊂ Dk
m . Next, we note that, due to Proposition 7.5, (ϕs−1,Ψ

s
t ) maps A into C s−1

s for each t > 0. Hence, we have

proved that for each δ > 0, ϕ
δ∼ Φt for sufficiently small t > 0, and Im(Φt) ∩ Fs = ∅. �

8. The construction of Dranishnikov’s resolution and the proof of Theorem 1.1

To construct Dranishnikov’s resolution, take a cube R of sufficiently high dimension, and represent the Hilbert cube R × Q
as the inverse limit of the spectrum lim←−{Zt � R × It , σt} where σt : Zt+1 → Zt is the projection along the last factor I . The

goal is to construct consecutively the inverse spectrum {Kt , θt} consisting of polyhedra whose limit is K = μk , and the
morphism {ht : Kt → Zt} of these spectra which will generate Dranishnikov’s resolution h = dk :μk → Z = R × Q ∼= Q .

For t = 1 we set Kt = R × I1 = Z1 and ht = Id. Suppose that for some t > 1 there is a map ht : Kt → Zt � R × It .
The cornerstone in the construction of Dranishnikov’s resolution and the proof of Theorem 1.1 consists in producing of the
commutative diagram,

Kt+1
θt

ht+1

Kt

ht

Z
σt Z

(Et )
t+1 t
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the characteristic map of which is

(1) k-conservatively soft;
(2) A UVk−1-divider of k-filled k-soft map; and such that
(3) Kt+1 admits a θ−1

t (ω)-map into k-dimensional polyhedron with arbitrarily fine cover ω ∈ cov Kt .

To make sure that this the case, let us consider the compactum K � lim←−{Kt , θt} and the limit map h = δk : K → R × Q ,
generated by commutative diagrams Et , t � 1. It was established in [16] that K is a strongly k-universal AE(k)-compactum
of dimension k, and δ−1

k preserves AE(k)-spaces. From Bestvina’s criterion [8] it follows that K is homeomorphic to the
Menger compactum μk . By Proposition 4.4, h = δk is k-conservatively soft.

We point out that, by virtue of (1)–(3), Theorem 4.6 is applied. As a result we get that

(i) The map δk is a UVk−1-divider of the limit map χk : X → Z = R × Q which is k-soft strongly k-universal with respect
to Polish spaces.4

Now, it easily follows that X ⊂ K is a strongly k-universal Polish AE(k)-space of dimension k = dim K . By characterization
Theorem 2.11 for Nöbeling space, it follows that X ∼= νk , which completes the proof of Theorem 1.1. The evident application
of (i), 3.8(a) and 3.9(b) proves Theorem 1.5.

Now we show that Theorem 6.2 implies the proof of the (1)–(3). To this end, we consider the polyhedron P � Kt × I
simultaneously with an arbitrarily fine triangulation L. It is clear that P is a fiberwise product of Zt+1 = R × It+1 and Kt
with respect to σt and ht . By Theorem 6.2 there exists a polyhedron D and maps p : D → P and q : D → P (k) such that
1.2(1)–(3) hold. It is easily seen that

(4) The projection π of the compactum Kt+1 � D × T onto D along the cube T of dimension t � 2k + 1 is a UVk−1-divider
of k-soft k-filled projection D × Nt

k onto D along the standard k-dimensional Nöbeling space Nt
k ↪→ T ∈ UVk−1 (see, for

example, [2–4]).

Complete the definition of the diagram Et as θt � σ ′
t ◦ p ◦ π : Kt+1 → Kt and ht+1 � h′

t ◦ p ◦ π : Kt+1 → Zt+1, where
σ ′

t ‖ σt is a projection along I and h′
t ‖ ht . It follows from 1.2(2) and (4) that the characteristic map of Ẽt – the map

p ◦ π : Kt+1 → Kt , is a UVk−1-divider of a k-filled k-soft map. It follows from 1.2(3) that if the triangulation L is sufficiently
fine, then the composition q ◦ π : Kt+1 → P (k) satisfies (3).

9. Epilogue

Here we list a selection of unsolved problems.

Uniqueness problem of Chigogidze’s resolution. By the k-dimensional Chigogidze’s resolution over Y ∈ ANE(k) we understand
a k-soft map f : X → Y of k-dimensional space X onto Y , which is strongly k-universal with respect to maps of Polish
spaces. One of the central problems of the Nöbeling space theory consists in establishing of the topological uniqueness of
such a resolution [17].

Problem 9.1. Prove that any two Chigogidze’s resolution f , g :νk → Q are homeomorphic, i.e. there exists a homeomorphism
h :νk → νk such that f = g ◦ h.

For k = ∞ this problem was solved in affirmative [21]. The case k = 0 was also settled (see, for example, [6]).

Problem of the characterization of Dranishnikov’s resolution. This resolution no doubt represent the analogy of the Menger
compactum in the category of maps. In analogy with compacta, the question of its characterization arises naturally. But prior
to doing this, we should understand what is Dranishnikov’s resolution. In view of the results of this paper, the k-dimensional
Dranishnikov’s resolution over Y ∈ ANE(k) is any proper map f : X → Y from a k-dimensional space X onto Y such that

(a) f is k-conservatively soft strongly k-universal with respect to compacta;
(b) f is a UVk−1-divider of k-dimensional Chigogidze’s resolution over Y ; and
(c) f −1 preserves ANE(k)-spaces.

These properties imply all other properties of k-dimensional Dranishnikov’s resolution. There is a definite hope that the
topological type of this resolution is unique.

4 We leave the proof of the following strengthening of (i) to the reader: Given ANE(k)-space A ⊂ R , χk� :χ−1
k (A × Q ) → A × Q is a k-soft strongly

k-universal with respect to Polish spaces, and δk� : δ−1
k (A × Q ) → A × Q is a UVk−1-divider of χk .



2188 S.M. Ageev et al. / Topology and its Applications 156 (2009) 2175–2188
Problem 9.2. Are any two k-dimensional Dranishnikov’s resolutions over Q homeomorphic?

Problem of geometrization of Dranishnikov’s resolution. Initially Dranishnikov’s and Chigogidze’s resolutions were ob-
tained in a nonconstructive manner as the limit projections of some countable spectra. We can identify their domains lying
in Hilbert cube with Menger and Nöbeling spaces only with help of corresponding characterization theorems. On the other
hand, in [5] Chigogidze’s resolution was constructed in a geometric manner as the orthogonal projection of the standard
Nöbeling space. The fractal structure of this resolution was thereby revealed. It was interesting to realize Dranishnikov’s
resolution also in a geometric manner. We precede the formulation of the corresponding conjecture by the series of defini-
tions.

The standard Menger space Mm
k ⊂ [0,1]m and geometric pseudointerior I(Mm

k ) ⊂ [0,1]m can be defined as follows:
Mm

k = {x = (x1, x2, . . . , xm) | each xn can be recorded as an infinite ternary fraction 0, ξn
1 ξn

2 ξn
3 · · · such that for each p � 1

at most k numbers ξ i
p is equal to 1} and I(Mm

k ) = {x = (x1, x2, . . . , xm) | each record of arbitrary xn as an infinite ternary

fraction 0, ξn
1 ξn

2 ξn
3 · · · is so that for each p � 1 at most k numbers ξ i

p equal 1}. The standard Menger space Mm
k and geometric

pseudointerior I(Mm
k ) for m � (2k + 1) are homeomorphic to μk and νk , respectively.

Conjecture 9.3. Let m � (2k + 1) + (k + 1)2 . Is it true that there exists an orthogonal projection p : Rm → Σ onto (2k + 1)-
dimensional subspace Σ such that p� : Mm

k → p(Mm
k ) has the same soft properties as Dranishnikov’s resolution? Is it UVk−1? Is it

true that p� : I(Mm
k ) → p(I(Mm

k )) is a Chigogidze’s resolution? Is it true that p�Mm
k

is a UVk−1-divider of p�I(Mm
k )?

Problem of the k-soft core. In [7] it was proved that Dranishnikov’s resolution δk is not homogeneous which breaks its
analogy with the Menger space. This result follows from the fact that the k-soft core of δk

sk(δk) �
{

x ∈ μk
∣∣ the collection of all fibers of δk is equi-locally (k − 1)-connected at x

}
does not coincide with μk , but sk(δk) ↪→ μk ∈ UVk−1. With the help of additional analysis we can show that sk(dk) contains
the domain of Chigogidze’s resolution which is a UVn−1-divider of Dranishnikov’s resolution δk . In this connection the series
of questions arises.

Problem 9.4. Is it true that k-soft core sk(δk) is homeomorphic to νk? the restriction of δk on sk(δk) is Chigogidze’s resolu-
tion?

Since δk :μk → Q is k-invertible, there exists a section s : P → μk for each polyhedron P ⊂ Q , dim P � k. The following
question is concerned with the possibility of constructing the section s in the equi-continuous manner, in the following
sense.

Problem 9.5. For each ε > 0 there exists δ > 0 such that for any polyhedron P ⊂ Q , dim P � k, there exists a section s of δk
such that diam s(A) < ε, A ⊂ P , as soon as diam A < δ.
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