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INTRODUCTION

This paper studies the isovariant category ISOV, whose objects are spaces with an action of a
compact group G and morphisms are isovariant maps. Historically, the objects of this category are
usually treated as generalized principal G-bundles and its injective objects (≡ Isov-AE-spaces), as
universal generalized principal G-bundles. Objects with similar properties were first constructed by
Palais for compact Lie groups acting on finite-dimensional spaces with finitely many orbit types [1,
Sec. 2.6.]. Afterward, this result was extended to compact metrizable groups acting on spaces with
finite-dimensional orbit space [2]. In [3], the last constraints were removed, and an existence theorem
for Isov-AE-spaces was proved.

{th1:v803
Theorem 1. If Xi is an Isov-generating Equiv-AE-space for any i ≥ 1, then∏

{Xi | i ≥ 1} ∈ Isov-AE.

A space X is said to be Isov-generating if, for any metric G-space Z, there exists an isovariant map
η : Z → X. It was proved in [4] that the countable power J � (Con T)ω of the metric cone Con T over the
discrete union T of all homogeneous spaces G/H ∈ G-ANE is Isov-generating (see also [5]). Since J

is also an Equiv-AE-space and J ∼= Jω, it follows from Theorem 1 that J ∈ Isov-AE.
Each family F belonging to the set ConjG of conjugate classes of closed subgroups of G generates

a series of equivariant homotopy invariants, including F-classifying G-spaces in the sense of [6], [7]
and generalized cohomology groups [8], [9], which are closely related to them, as well as fundamental
classes of G-spaces and other equivariant homotopy invariants [10]. Theorem 1 makes it possible to
prove that, on F-classifying G-spaces, the additional structure of isovariant absolute extensors can be
defined, which opens new possibilities for calculating homotopy invariants of the orbit spaces of F-
classifying G-spaces. In turn, this gives important information about the generalized cohomology of
compact groups.

Theorem 1 also implies the important conclusion that the equivariant homotopy type of Equiv-ANE-
spaces coincides with the isovariant homotopy type of Isov-ANE-spaces. This clarifies the functorial
nature of the operation of the passage to the bundle of orbits of a given type, which is not preserved by
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104 AGEEV, REPOVŠ

equivariant homotopy equivalences. The circle of questions outlined above will be considered elsewhere
(see, e.g., [3], [11]).

In this paper, we apply Theorem 1 to prove that the orbit space E of any Isov-AE-space E classifies
G-spaces in the sense of Palais. To this end, we carry over Palais’ classical result on covering homotopy
(see [1], [2]) to arbitrary compact groups and obtain a more general result on the extension of covering
homotopy (Theorem 2). By virtue of this result, the category ISOV admits a homotopy representation,
which largely reduces studying this category to considering homotopy properties of topological spaces
(see Theorem 5).

Statement of the Covering Homotopy Extension Problem
Let G be a compact group. Consider the following commutative square G-diagram D:

S × [0, 1] ∪ T × {0} ϕ ��
� �

X

f

��
T × [0, 1]

ψ �� Y .

In this diagram, S ⊂ T is a closed G-subspace and f , ϕ, and ψ are G-maps. We say that the diagram D
is admissible (weakly admissible) for the G-map f if

(a) ϕ is an isovariant map (respectively, ϕ is an isovariant map and ψ induces a homeomorphism
ψ : T × [0, 1] → Y of the orbit spaces);

(b) (f−1 ◦ ψ)(G(u) × I) has single orbit type (Gu) for each u ∈ T .

Any admissible commutative diagram D satisfies the following conditions:

1) the orbit types of the spaces X and T are related by OrbT ⊂ OrbX;

2) if the map f is isovariant, then so is the map ψ.

If D is an admissible diagram and f is a P-orbit projection, then

3) the induced map ψP : T/P × [0, 1] → Y given by (ψP )(P · u, t) = ψ(u, t) is well defined, and this
map is an isovariant embedding.

We say that a G-map ϕ̂ : T × [0, 1] → X splits the diagram D if ϕ̂ is a lift of ψ with respect to f
(i.e., f ◦ ϕ̂ = ψ) and ϕ̂ = ext ϕ. By virtue of (b), the map ϕ̂ is necessarily isovariant (i.e., ϕ = ϕ̂ on
S × [0, 1] ∪ T × {0}).

We say that the isovariant covering homotopy extension problem is solvable (weakly solvable)
for a G-map f : X → Y if any admissible G-diagram (any weakly admissible G-diagram) D for f splits.
In this case, we say that the G-map f : X → Y is a Hurewicz Isov-bundle (a weak Hurewicz Isov-
bundle). Clearly, any Hurewicz Isov-bundle is a weak Hurewicz Isov-bundle. The following theorem
plays the key role in this paper.

{th2:v803
Theorem 2. Any orbit projection p : X → X is a Hurewicz Isov-bundle.

Now, applying the equimorphism criterion to an isovariant map ϕ̂ splitting a weakly admissible
G-diagram D from which S is missing, we obtain a generalization to any compact groups of Palais’
well-known theorem on the equivariant type of a space having the orbit type of the product W × [0, 1]
(see [1]).

The proof of Theorem 2 is based on the following result, with is of independent interest.
{th3:v803

Theorem 3. Let π : G → H be an epimorphism of compact groups whose kernel P = Ker π is a Lie
group. Then any P -orbit projection f : X → Y = X/P is a Hurewicz Isov-bundle.

We reduce Theorem 2 to Theorem 3 as follows. First, we expand the G-space X in a Lie series
{Xα, πβ

α}. Since Pα/Pα+1 is a compact Lie group, it follows by Theorem 3 that the bonding Pα+1
α -orbit

projection πα+1
α : Xα+1 → Xα is a Hurewicz Isov-bundle for each α < τ . Then, arguing by transfinite

induction, we prove that the limit orbit projection π : X → X is a Hurewicz Isov-bundle as well.
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COVERING HOMOTOPY EXTENSION PROBLEM FOR TRANSFORMATION GROUPS 105

Homotopy Representation of the Category ISOV

On the orbit space X of a G-space X, we consider the stratification {X(H) | H < G} generated by
the orbit types (the space X itself is called an S-space); a map α : X → E of S-spaces is said to be
stratification-preserving (or, briefly, an S-map) if

α(X(H)) ⊂ E(H) for any subgroup H < G.

An S-homotopy H : X × I → E between stratification-preserving maps is defined in a similar way (i.e.,
it is required that H(X(H) × I) ⊂ E(H) for any H < G).

The fiber product of spaces C and B with respect to maps C
g−→ A and B

f−→ A is defined as the set

{(c, b) | g(c) = f(b)} ⊂ C × B,

which we denote by C g×f B or, briefly, by g∗(B) or f∗(C). The projections D = C g×f B onto the
factors C and B determine maps f∗ : D → C and g∗ : D → B. We refer to f∗ as the map parallel to f
and to the map g∗ as the map parallel to g.

An equimorphism criterion (Proposition 2) relates isovariant maps to fiber products.
{pr1:v803

Proposition 1. Let h : Y → X be an isovariant map, and let h̃ : Y → X be the map of orbit
spaces generated by h. Then the G-map h and the G-map (h̃)∗ : (h̃)∗(X) → X parallel to h̃

are equimorphic, i.e., there exists a G-homeomorphism θ : (h̃)∗(X) → Y for which h ◦ θ = (h̃)∗

(thereby, Y is identified with the fiber product h̃∗(X)).

Using Theorem 2 and Proposition 1, we prove that the G-spaces determined by homotopic S-maps
connected by an S-homotopy are equimorphic; namely, the following theorem is valid.

{th4:v803
Theorem 4. If S-maps α : X → E and β : X → E are connected by an S-homotopy, then the fiber
products

α∗(E) = Eπ ×α X and β∗(E) = Eπ ×β X

are equimorphic (here π : E → E is the orbit projection).

If a G-space E is an Isov-AE, then the converse is also true; that is, if α∗(E) ∼=G β∗(E), then the
S-maps α : X → E and β : X → E are connected by an S-homotopy.

Let S-HOMOTE denote the category whose objects are S-homotopy classes [α] : X → E of
S-maps and the morphism between S-maps [α] and [β] : Y → E is the S-homotopy class of the S-map
h : X → Y for which α = β ◦ h.

To each object [α] : X → E of the category S-HOMOTE we assign the G-space coinciding with the
fiber product X � α∗(E), and to each morphism [h] : X → Y we assign the isovariant map

[h]∗ : X = α∗(E) ∼=G (α′)∗(E) h∗−→ β∗(E) � Y, where h∗(x, e) = (h(x), e).

It follows readily from Theorem 4 that, under certain conditions, the covariant functor Φ thus con-
structed is an isomorphism between the isovariant homotopy category ISOV-HOMOT and the category
S-HOMOTE .

{th5:v803
Theorem 5. If E is an Isov-AE-space, then

Φ: S- HOMOTE → ISOV-HOMOT

is an equivalence of categories.

Theorem 5 can be regarded as an additional argument supporting the thesis that the isovariant
category is a generalization of the category of principal G-bundles.
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1. PRELIMINARY INFORMATION AND RESULTS {sec1:v80
From now on, all spaces (maps) if they do not arise as the result of certain constructions and if it

is not otherwise specified, are assumed to be metric (continuous); we consider only actions of compact
groups.

Below we recall the basic notions of the theory of G-spaces [12]. By an action of a compact group G
on a space X we mean a continuous map µ from the product G × X to X which satisfies the conditions

µ(g, µ(h, x)) = µ(g · h, x), µ(e, x) = x for all x ∈ X, g, h ∈ G

(here e denotes the identity element of the group G). As a rule, instead of µ(g, x) we write g · x or
simply gx. A space X with an action of a group G is called a G-space. A map f : X → Y of G-spaces is
said to be a G-map, or an equivariant map, if f(g · x) = g · f(x) for all x ∈ X and g ∈ G.

Note that all G-spaces and G-maps form a category, which we denote by G-TOP or by EQUIV,
if it is clear what group G is considered. We freely use the symbols “G-” and “Equiv-”, which mean
“equivariant.” If “∗ ∗ ∗” is a certain notion from nonequivariant topology, then “G-∗ ∗ ∗” and “Equiv-
∗ ∗ ∗” stand for the corresponding equivariant counterpart.

The orbit G(x) of a point x ∈ X is defined as the subset {g · x | g ∈ G} = G · x; this subset is always
closed. The natural map

π = πX : X → X, x 
→ G(x),

of the space X to the space X � X/G of the quotient partition is called the orbit projection. The
space X of the quotient partition endowed with the quotient topology generated by π is called the orbit
space. A subset A is said to be invariant, or a G-subset, if π−1π(A) = G · A.

By ConjG we denote the set of all conjugacy classes of the closed subgroups of G and by OrbG, the
family of all homogeneous spaces up to equimorphism. On these sets, we introduce the following partial
orders:

(K) ≤ (H) ⇐⇒ K is contained in some representative H ′ of the class (H),
G/K ≥ G/H ⇐⇒ there exists an equivariant map f : G/K → G/H;

the bijection

(H) ∈ ConjG 
→ G/H ∈ OrbG

reverses these orders. Taking into account this observation, we shall identify the sets specified above and
use the same name, the set of G-orbit types, and the same notation OrbG for these sets at all places
where such an identification causes no ambiguity.

For each point x ∈ X, the subset

Gx = {g ∈ G | g · x = x}
is a closed subgroup in the group G; this subgroup is called the stabilizer of the point x. For any closed
subgroup H < G, we define the following subsets of X:

• XH = {x ∈ X | H · x = x} = {x ∈ X | H ⊂ Gx} (this is the H-fixed point set);

• XH = {x ∈ X | H = Gx};

• X(H) = {x ∈ X | H is conjugate to Gx} (this is the bundle of orbits of type (H)).

By OrbX we denote the set {(Gx) | x ∈ X} ⊂ OrbG, that is, the family of orbit types of X.
An equivariant map f : X → Y is said to be isovariant if f preserves stabilizers, i.e., Gx = Gf(x) for

all x ∈ X. The category formed by all G-spaces and isovariant maps is denoted by ISOV (it is always
clear what group G is meant). The following equimorphism criterion is widely known (see [12, Chap. 1,
Example 10]).

{pr2:v803
Proposition 2. An isovariant continuous map is a homeomorphism if and only if the orbit map
generated by this map is a homeomorphism.
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Consider a compact group G, a metric H-space Y, where H < G, and the diagonal action

h · (g, y) � (g · h−1, h · y)

of the group H on the product G × Y. Let [g, y] denote the element

H · (g, y) = {(g · h−1, h · y) | h ∈ H}
of the orbit space (G × Y)/H . The relation

g1 · [g, y] = [g1 · g, y], where g, g1 ∈ G, y ∈ Y,

specifies a well-defined continuous action of G on (G × Y)/H , which is called the twisted product of G
and Y and denoted by G ×H Y. Any G-space A admitting a G-map α : A → G/H to a homogeneous
space is equimorphic to the twisted product G ×H S, where S � α−1([H]) is an H-space, because the
continuous G-map ϕ : G ×H S → A defined by ϕ([g, s]) = g · s is an equimorphism. We leave the proof
of the following fact to the reader.

{lem1:v80
Lemma 1. Suppose that the G-orbit type of a twisted product G ×H S is single. If the orbit space
S/H is connected, then the H-orbit type of S is single as well.

Below we introduce a number of notions related to the extension of G-maps in a category C coinciding
with ISOV or EQUIV. We say that a space X with an action of a compact group G is an absolute
neighborhood C-extensor (and write X ∈ C-ANE) if each morphism ϕ : A → X from C defined on a
closed G-subset A ⊂ Z of a G-space Z (which is called a partial C-morphism) can be extended over
some G-neighborhood U ⊂ Z of the set A to a morphism ϕ̂ : U → X ∈ C. If U can always be rendered
equal to Z, then we say that X is an absolute C-extensor (and write X ∈ C-AE). In the case where
the acting group G is trivial (i.e., spaces are considered without actions), this notion transforms into the
notion of an absolute [neighborhood] extensor for metric spaces; the class of absolute [neighborhood]
extensors is denoted by A[N]E (see [13]).

An absolute [neighborhood] C-extensor is called

• an equivariant [neighborhood] extensor (or, briefly, an Equiv-A[N]E-space) if C = EQUIV;

• an isovariant [neighborhood] extensor (or, briefly, an Isov-A[N]E-space) if C coincides with the
category ISOV.

Note that the Isov-AE-space coincides with the universal G-space in the sense of Palais, and its orbit
space classifies G-spaces. If there is a C-homotopy H : X× [0, 1] → Y between morphisms f, g : X → Y

in the category C, then we write

• f �Equiv g in the case C = EQUIV,

• f �Isov g in the case C = ISOV.

A closed subgroup H < G of a compact group G is called an extensor subgroup if the homogeneous
space G/H is a metrizable G-ANE-space. As is known, if H < G is an extensor subgroup, then there
exists a normal subgroup P � G for which (i) P < H and G/P is a compact Lie group; (ii) G/H is
a topological manifold; and (iii) G/H is finite-dimensional and locally connected. Each of these three
properties characterizes extensor subgroups [14]. The existence of arbitrarily small normal extensor
subgroups in any compact group implies the following assertion.

{pr3:v803
Proposition 3. Given any neighborhood O(H) ⊂ G of a subgroup H in a compact group G, there
exists an extensor subgroup H ′ < G for which H ⊂ H ′ ⊂ O(H).

This and other properties of extensor subgroups are presented in [15], [5]. The well-known notion of
a Euclidean neighborhood G-retract over a space [7] can be generalized as follows.
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{def1:v80

Definition 1. A G-map f : X → Y is said to be locally equivariantly soft if, for any G-diagram

X
f �� Y

A

ϕ

��

� � �� W

ψ

��

admissible with respect to f 1, there exists a neighborhood G-extension ϕ̂ : U(A) → X of ϕ which is a lift
of ψ.

It is easy to strengthen T. tom Dieck’s theorem [7, Sec. 7.6.4.] to the following assertion.
{th6:v803

Theorem 6. Suppose that K < H < G and K < G is an extensor subgroup. Then the natural
G-map

p : G/K → G/H, g · K 
→ g · H,

is equivariantly locally soft.

An epimorphism π : G → H of compact groups with kernel P generates the equivalence relation
x ∼ x′ ⇔ x′ ∈ P · x on the G-space X. Clearly, the quotient space X/P by this equivalence coincides
with {P · x | x ∈ X} and is an H-space:

h · (P · x) = P · (g · x), where g ∈ π−1(h).

If y = P · x, then the stabilizer Hy coincides with π(Gx).

We refer to the quotient map f : X → X/P as the P -orbit projection. If P = G, then f coincides
with the orbit projection p : X → X/G. Since the composition of the P-orbit projection f with the orbit
projection of the H-space (X/P )/H is a perfect map, it follows that this composition itself is a perfect
surjection and has the following properties:

f(gx) = π(g) · f(x) for all x ∈ X, g ∈ G, (1) {eq1:v803

π(Gx) = Hf(x) for all x ∈ X, (2) {eq2:v803

if f(x) = f(x′), then x and x′ belong to the same G-orbit. (3) {eq3:v803

It turns out that these properties completely characterize P-orbit projections [5].
{pr4:v803

Proposition 4. A perfect surjection f : X → Y from a G-space X to an H-space Y is a P -orbit
projection if and only if f has properties (1)–(3).

Suppose that K < G, L � π(K) < H , and π′ � π : K → L is an epimorphism of compact groups
with kernel Q = P ∩ K. Clearly,

the map p : G/K → H/L, p(g · K) = π(g) · L, is a P-orbit projection. (4) {eq4:v803

Suppose also that f : X → Y is a P-orbit projection and ϕ : X → G/K is the slice map. Clearly,
X′ � ϕ−1([K]) is a K-space, and Y′ � f(X) is an L-space. Proposition 4 readily implies the following
heredity property of orbit projections.

{pr5:v803

Proposition 5. The restriction map f ′ � f : X′ → Y′ is a Q-orbit projection.

1That is, for a G-diagram in which A ⊂ W is a closed G-subspace, f , ϕ, and ψ are G-maps, and f ◦ ϕ = ψ�
A

.
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If K < G and P \K �= ∅, then there exists an extensor subgroup K < G for which K < K < G and
the map

p : G/K → H/L, p(g · K ) = π(g) · L, where L � π(K ) < H,

is a nontrivial P-orbit projection (therefore, by Theorem 6, it is equivariantly locally soft).
Suppose given an extensor subgroup K < G, a G-map f : X → Y, a closed G-subset X0 ⊂ X, and

a commutative G-diagram

X0
ϕ ��

f�
��

G/K

p

��
Y

ψ �� G/H .

By virtue of Theorem 6, the natural G-map p : G/K → G/H , where K < H < G, is equivariantly locally
soft, and the commutative G-diagram is easy to transform into an admissible G-diagram

G/K
ϕ←− X0 ⊂ X

ψ◦f−−→ G/H

with respect to p. This readily implies the following theorem, which can be regarded as a generalization
of the slice extension theorem for G-spaces to the case of G-maps.

{th7:v803
Theorem 7. There exists a G-extension ϕ̂ : O(X0) → G/K of the map ϕ to a G-neighborhood
O(X0) for which p ◦ ϕ̂ = ψ ◦ f�.

Lie Series for G-Spaces

In a compact group G, consider a Lie series {Pα 	 G} of normal subgroups indexed by ordinals α < τ
(see [14]). This means that

P1 = G, Pβ < Pα for all α < β,

Pα/Pα+1 is a compact Lie group for each α < τ,
⋂

{Pα | α < τ} = {e}. (5) {eq5:v803

In this case, G is the limit lim←−{G/Pα, ϕβ
α} of the inverse system of quotient groups G/Pα and natural

epimorphisms χβ
α : G/Pβ → G/Pα, α < β. The kernels χα+1

α of the bonding maps coincide with the
compact Lie groups Pα/Pα+1.

Consider a more general construction. Let πβ
α : Xβ → Xα be the natural projection of Xβ = X/Pβ

onto Xα = X/Pα. Then πβ
α is a Pα/Pβ-orbit projection, and the map π : X → lim←−{Xα, πβ

α} defined by
π(x) = {Pα · x} is an equimorphism. This assertion is proved by directly applying the equimorphism
criterion. Note that the bonding maps πα+1

α are P-orbit projections for the compact Lie group
P = Pα/Pα+1. We say that the inverse system {Xα, πβ

α} is a Lie series for the G-space X.
The converse situation, in which an inverse system is given but the G-space is not, often arises. The

well-known Theorem 11 from [16, Chap. 2, Sec. 6] can be generalized as follows.
{lem2:v80

Lemma 2. Let {Pα 	 G} be a Lie series. Suppose that, for any α < β, P β
α is the kernel of the

homomorphism ϕβ
α and gβ

α : Zβ → Zα is a P β
α -orbit projection; moreover,

gβ
α ◦ gγ

β = gγ
α for all α < β < γ.

Then Z = lim←−{Zα, gβ
α} is a G-space, Zα = Z/Pα, and the inverse system {Zα, gβ

α} is a Lie series
for Z.

The following characterization of G-spaces of the form G/H × [0, 1] is, possibly, be known.
{pr6:v803

Proposition 6. If Z = Z(H) and Z = [0, 1], then Z is equimorphic to G/H × [0, 1].
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Proof. The natural projection π : ZH → Z can be treated as the orbit projection under the action of the
normalizer N(H) on ZH ; i.e., we can assume that Z = ZH/N(H). According to Proposition 7, the
map π has a section σ : Z → ZH . Thus,

ϕ : G/H × [0, 1] → Z, ϕ(gH, t) = g · σ(t),

is a well-defined equimorphism.
{pr7:v803

Proposition 7. If a compact group G acts on a space X of a single orbit type, then the orbit
projection p : X → X is a Hurewicz bundle.

Proof. Consider the expansion of the G-space X in a Lie series {Xα, πβ
α}. Since P = Pα/Pα+1 is a

compact Lie group, it follows by Lemma 3 that the bonding P-orbit projections πα+1
α are locally trivial

bundles and, therefore, Hurewicz bundles.
{lem3:v80

Lemma 3. Any P -orbit projection f : X → Y from a G-space X of a single orbit type to an
H-space Y, where the kernel P of the epimorphism π : G → H is a compact Lie group, is a locally
trivial bundle.

Proof of Lemma 3. The required assertion follows readily from the slice extension theorem.

2. ISOVARIANT EXTENSORS {sec2:v80
Obviously, Theorem 1 is implied by the following more precise theorem.

{th8:v803
Theorem 8. Suppose that, for any i ≥ 1, Xi is an Isov-generating Equiv-AE-space. Then,

for any partial G-map Z ←↩ A
ϕ−→ X �

∏
{Xi | i ≥ 1},

there exists a G-map ψ : Z → X extending ϕ

for which ψ�Z\A is an isovariant map. (6) {eq6:v803

Proof. Since X ∈ Equiv-AE, it is sufficient to find, given any equivariant map ϕ̂ : Z → X, a G-map
ψ : Z → X extending ϕ = ϕ̂�A for which ψ�Z\A is an isovariant map. Since A ⊂ X is closed, we can
choose a sequence of neighborhoods Z = U0 � U1 � · · · and G-functions χi : Z → [0, 1], i ≥ 1, so that⋂

Ui = A, χ−1
i (0) ⊃ Z \ Ui, χ−1

i (1) ⊃ Ui+1
2.

Let us represent the map ϕ̂ in the form
∏

ϕ̂i, where ϕ̂i : Z → Xi is an equivariant map. Take an
isovariant map ei : Z → Xi (which exists, because Xi is Isov-generating) and let Hi : Z × I → Xi be an
Equiv-homotopy between ei and ϕ̂i (which exists as well, because Xi ∈ Equiv-AE). Then the required
map ψ is defined by

ψ�A = ϕ̂�A = ϕ,

(ψ�Ui\Ui+1
)(z) = ϕ̂1 × · · · × ϕ̂i−1 × Hi(z, χi(z)) × ei+1 × · · · for i ≥ 0.

Take a closed topological embedding j : X ↪→ L of the orbit space of any G-space X into some
normed linear space L [17]. Since the countable power J of the metric cone Con T over

T =
⊔

{G/H | G/H ∈ G-ANE}

is Isov-generating [5], it follows that there exists an isovariant map f : X → J. Obviously, the product
(j ◦ p) × f is a closed topological G-embedding of X into the G-space Y � L × J; obviously, this G-
space is an Isov-AE. Thus, we have proved the following theorem.

{th9:v803
Theorem 9. Any G-space admits a closed G-embedding into an Isov-AE-space of the form L× J.

2We say that an embedding A ⊂ B is strict and write A � B if Cl A ⊂ IntB.
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An easy consequence of Theorems 9 and 8 is an important relation between the injective objects of
the isovariant and the equivariant category.

{th10:v80
Theorem 10. Any Isov-A[N]E-space X has property (6); therefore, any Isov-A[N]E-space is an
Equiv-A[N]E-space.

We mention without proof that the equivariant Hilbert cube Q (for a compact metric group G) is an
Isov-AE. On the other hand, if X is a compact Isov-AE-space, then the product of X and the Hilbert
cube Q is equimorphic to Q. Other examples of Isov-AE-spaces are the equivariant space L2 and
the space C(G,L) (with the metric of uniform convergence) of all continuous maps f : G → L to an
equivariant Hilbert space L of weight w(G) on with the group G continuously acts by the rule

(g · f)(h) = f(g−1 · h), where f ∈ C(G,L), g, h ∈ G.

These and other results of the theory of isovariant extensors will be published elsewhere.

It is easy to give an example of an Equiv-AE-space Z /∈ Isov-ANE. In what follows, we obtain
several results which make it possible to assess the degree of dissimilarity between these two classes;
namely, X ∈ Equiv-ANE implies the equi–local contractibility (equi-LC) property for the family
{XH | H < G}, and X ∈ Isov-ANE implies {XH | H < G} ∈ equi-LC; moreover, Con X ∈ Isov-AE
and XG ∈ AE imply X ∈ Isov-AE.

Apparently, the following questions are of certain interest in relation to the Hilbert–Smith conjec-
ture [18]. Suppose that the acting group G is nontrivial and X ∈ Isov-AE. Is it true that dim X = ∞?
dim X = ∞?

3. JOINING SPLITTINGS {sec3:v80

The restriction of an admissible diagram D to an invariant subset U ⊂ T is defined as the
diagram

US × [0, 1] ∪ U × {0} � � ϕU ��
� �

XU � f−1(YU)

f

��
U × [0, 1]

ψU �� YU � ψ(U × [0, 1]) ,

denoted by DU, in which ϕU is the restriction of ϕ to US × I ∪ U × {0}, ψU � ψ�U×I , and US � U ∩ S.
Clearly, DU is an admissible diagram; if the diagram D splits, then so does DU.

The following proposition on joining splittings is a modification of an argument used by Palais in [1]
to a more general situation.

{pr8:v803
Proposition 8. Let {Tλ | λ ∈ Λ} be an open locally finite G-cover of T such that the restriction Dλ

of an admissible diagram D to Tλ splits for any λ ∈ Λ. Then the diagram D splits as well.

First, consider the case of a two-element index set Λ.
{lem4:v80

Lemma 4 (on joining two splittings). Let {T1, T2} be an open G-cover of T, and let Di be the
restriction of an admissible diagram D to Ti. If G-homeomorphisms gi : Ti × [0, 1] → XTi , i ≤ 2,
split the diagrams (D)i, respectively, then there exists a G-homeomorphism g : T × [0, 1] → X

splitting the diagram D. Moreover,

g = gi on Ti \ T0, where T0 � T1 ∩ T2. (7) {eq7:v803

Proof. The proof of Lemma 4 is based on the following homotopy splitting effect.
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{lem5:v80
Lemma 5 (on homotopy splitting). If the G-homeomorphisms ϕ̂i : T × [0, 1] → X, i = 1, 2, split the
admissible diagram D, then there exist isovariant G-homotopies

Hs : T × [0, 1] → X, 0 ≤ s ≤ 1,

between ϕ̂1 and ϕ̂2 such that the Hs split the diagram D3 for all 0 ≤ s ≤ 1.

(The proof of Lemma 5 is given after the proof of Proposition 8.)
According to Lemma 5 on homotopy splitting, there exist

isovariant G-homotopies Hs : T0 × [0, 1] → XT0 , 0 ≤ s ≤ 1, between g1�T0
and g2�T0

such that the G-homeomorphisms Hs split the diagram DT0 for all 0 ≤ s ≤ 1. (8) {eq8:v803

Since T \ T2 and T \ T1 are disjoint closed subsets of the normal space T, it follows that there exists an
invariant function ξ : T → [1, 2] such that

ξ ≡ 0 in a neighborhood of T \ T2,

ξ ≡ 1 in a neighborhood of T \ T1.
(9) {eq9:v803

Finally, we set

g(u, t) =

⎧⎪⎨
⎪⎩

g1(u, t) if (u, t) ∈ (T \ T2) × I,

Hξ(u)(u, t) if (u, t) ∈ T0 × I,

g2(u, t) if (u, t) ∈ (T \ T1) × I.

The continuity of the resulting map g : T × I → Z is checked directly by using (9). It follows from (8)
that g splits the diagram D. This completes the proof of Lemma 4.

The rest of the proof of Proposition 8 on joining splittings proceeds by standard transfinite induction
on the well-ordered index set Λ by using Lemma 4 on joining two splittings. The stabilization of the
map g (to be constructed) which splits the diagram D and its continuity follow from the local finiteness
of the cover {Tλ} and property (7). We leave the details to the reader.

Proof of Lemma 5. It follows readily by assumption that h � (ϕ̂1)−1 ◦ ϕ̂2 is a G-self-homeomorphism
of T × [0, 1] which is the identity map on S × [0, 1] ∪ T × {0}. Since

ψ = p ◦ ϕ̂2 = (ψ ◦ ϕ̂−1
1 ) ◦ ϕ̂2 = ψ ◦ h, (10) {eq10:v80

it follows that h has the form

h(z, t) = (ϕt(z), t),

where ϕt : T → T is a continuous (in t ∈ T ) family of G-homeomorphisms. Clearly,

ϕ0 = Id, ϕt�S = Id for all t ∈ I.

By virtue of (10), we have

ψ(w) = ψ(P · w) = ψ(h(P · w)) for all w = (z, t) ∈ T × I;

hence

(ψP )(P · z, t) = (ψP )(P · ϕt(z), t).

Taking into account the fact that ψP is an H-homeomorphism, we obtain

P · z = P · ϕt(z) for all t ∈ I. (11) {eq11:v80

Now, we set

hs(u, t) = (ϕs·t(u), t) : T × I → T × I, 0 ≤ s ≤ 1.

3Therefore, Hs is an G-homeomorphism.
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It can be verified directly that hs is a continuous family of G-homeomorphisms, and, moreover,

h1 = h, h0 = Id, hs = h on S × [0, 1] ∪ T × {0}. (12) {eq12:v80

By using (11), it is easy to derive that

ψ = ψ ◦ hs for all s ∈ I. (13) {eq13:v80

Finally, we define the required isovariant homotopy by

Hs � ϕ̂1 ◦ hs, 0 ≤ s ≤ 1.

All of the required properties of Hs follow from (12) and (13).

4. PROOF OF THEOREM 3 {sec4:v80
It suffices to prove that the P-orbit projection f : X → Y = X/P is a Hurewicz Isov-bundle. Indeed,

if there is an admissible diagram D for the P-orbit projection f from Theorem 3, then we pass from Y to
the image Y′ ⊂ (T × I) × Y of T × I under the G-map

q × ψ : T × I → (T × I) × Y

and from X to the preimage X′ ⊂ (T × I) × X of Y′ under the P-orbit projection

f ′ = Id×f : (T × I) × X → (T × I) × Y

(here q : T × I → T × I is the orbit projection). Let ϕ′ and ψ′ denote the maps

q × ϕ : S × [0, 1] ∪ T × {0} → X′, q × ψ : T × [0, 1] → Y′,

respectively. Clearly, the P-orbit projection f ′ : X′ → Y′ is naturally involved in an admissible dia-
gram D′, which is weakly admissible, because ψ′ induces a homeomorphism of the orbit spaces. The
validity of Theorem 3 for weakly admissible diagrams implies the existence of an isovariant G-map
ϕ̂ ′ : T × [0, 1] → X′ which splits D′. The required isovariant G-map ϕ̂ : T × [0, 1] → X splitting D is
the composition of ϕ̂ ′ with the projection (T × I) × X onto the factor X.

In any completely admissible diagram D, the isovariant map

ϕ : S × [0, 1] ∪ T × {0} → X

is a closed G-embedding. Thus, in the proof of Theorem 3, we can assume without loss of generality
that

1) S × [0, 1] ∪ T × {0} is a closed subset of X, and ϕ is the identity embedding;

2) Y = (T/P ) × I, and ψP : (T/P ) × I → Y is the identity map;

3) the map f�S×[0,1]∪T×{0} coincides with the restriction of the canonical P-orbit projection T ×
[0, 1] → T × [0, 1] to S × [0, 1] ∪ T × {0}.

The rest of the proof of Theorem 3 asserting that the weakly admissible G-diagram is split proceeds
by induction on the compact Lie group P by using Palais’ metatheorem [1], whose proof is based on the
stabilization of a decreasing (by inclusion) sequence of compact Lie groups.

{pr9:v803
Proposition 9. Let P(H) be a property depending on a compact Lie group H . Suppose that P(H)
holds for the trivial group H = {e} and P(H) holds if so does P(K) for any proper subgroup
K < H . Then P(H) holds for all compact Lie groups H .

If |P | = 1, then the epimorphism π : G → H is an isomorphism, which trivializes the situation under
examination. Suppose that, for any proper subgroup Q < P , Theorem 3 is valid. Let us show that it is
valid for any P-orbit projection f : X → Y.

The following lemma reduces proving that the weakly admissible diagram D splits to the case in
which there are no P-fixed points in X.

MATHEMATICAL NOTES Vol. 92 No. 6 2012



114 AGEEV, REPOVŠ

{lem6:v80
Lemma 6. If any weakly admissible diagram D with empty XP splits, then so does any weakly
admissible diagram.

Proof. By assumption, there exists an isovariant map

ϕ′ : (T \ TP ) × I → X \ XP

splitting the weakly admissible diagram DT\TP . We extend the map ϕ′ so that the extension coincides

with ψ on TP × I. It is easy to check that ϕ′ is well defined and continuous.

Let D be a weakly admissible diagram. By virtue of Lemma 6, in what follows, we can assume that
XP = ∅ for the G-space X (or, equivalently, that P \ Gx �= ∅ for all x ∈ X). The product

S × [0, 1] ∪ T × {0}

is naturally embedded in X; therefore, TP = ∅.

First, suppose that T admits a nontrivial slice map α : T → G/K, where K < G is an extensor
subgroup with P \ K �= ∅. Then the G-map

β � α ◦ pr1 : T × [0, 1] → G/K,

where pr1 : T × I → T is the projection onto the first factor, generates the slice map

βP : Y = (T/P ) × [0, 1] → G/(P · K) = H/L, where L � π(K) < H,

under the passage to the P-orbit projection. Let

p : G/K → G/π−1(π(K)) ∼= H/L

denote the natural G-map, which is a P-orbit projection.
{lem7:v80

Lemma 7. If the partial G-map

X ←↩ S × [0, 1] ∪ T × {0} β�−→ G/K

admits a G-extension β̂ : X → G/K for which βP ◦ f = p ◦ β̂, then the diagram D splits.

Proof. Let π′ � π� : K → L be the epimorphism of compact groups with kernel Q = P ∩ K. Since
P \ K �= ∅, it follows that Q is a proper subgroup in the Lie group P .

Now consider the K-space T′ � α−1([K]), its closed subspace S′ � T′ ∩ S, and the K-space
X′ � β̂−1([K]). Clearly, the L-space Y′ � β−1

P ([L]) coincides with f(X′). It follows from Proposition 5
on the heredity of orbit projections that the restriction map f ′ = f� : X′ → Y′ is a Q-orbit projection.

We have β̂ = ext(β�S×[0,1]∪T×{0}); hence

ϕ(S′ × I ∪ T′ × {0}) ⊂ X′, ψ(T′ × I) = Y′.

Let

ϕ′ : S′ × I ∪ T′ × {0} ↪→ X′ ψ′ : T′ × I → Y′

be the restrictions of ϕ and ψ to the corresponding subsets. Consider the naturally arising commutative
K-diagram

S′ × I ∪ T′ × {0} � � ϕ′
��

� �
X′

f ′

��
T′ × I

ψ′
�� Y′ ,
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in which ψ′ induces a homeomorphism of the orbit spaces and ϕ′ is a K-embedding; we denote this
diagram by D′. It follows readily from Lemma 1 that the G-space Z � (f ′)−1(ψ′(t′ × I)) is of a single
orbit type; therefore, the commutative K-diagram D′ is weakly admissible.

The subgroup Q < P is proper. Therefore, by the induction hypothesis, there exists a K-map
ϕ̂ ′ : T′ × I → X′ splitting D′. A direct verification shows that the rule

ϕ̂([g, s]K) = [g, ϕ̂ ′(s)]K , s ∈ T′ × I

well defines a G-map

ϕ̂ : G ×K (T′ × I) ≡ T × I → G ×K X′ ≡ X,

which splits the diagram D.

Let us show that the assumptions of Lemma 7 (and, hence, its conclusions) hold for the elements
of some invariant cover of T. By virtue of the splitting joining theorem and the induction hypothesis,
Theorem 3 will follow.

Take any point t ∈ T. The relation P \ Gt �= ∅ and Proposition 3 imply the existence of an extensor
subgroup K < G for which Gt < K and P \ K �= ∅. Since G/K ∈ G-ANE, it follows that there exists
a slice map α : U → G/K, where U = U(t) ⊂ T is a G-neighborhood of t.

Let L � π(K) < H , and let

p : G/K → G/π−1(π(K)) ∼= H/L

be the natural G-map generated the embedding of groups K < π−1(π(K)). Consider the slice map

βP : ψ(U) × [0, 1]) = (U/P ) × [0, 1] → G/(P · K) = H/L

obtained from the G-map β � α ◦ pr1 : U × [0, 1] → G/K under the passage to the P-orbit projection.
{pr10:v80

Proposition 10. There exists a G-neighborhood V ⊂ U of the point t for which the partial G-map

(f−1 ◦ ψ)(V × I) ←↩ (S ∩ V) × I ∪ V × {0} β−→ G/K

admits a G-extension

β̂ : (f−1 ◦ ψ)(V × I) → G/K for which βP ◦ f = p ◦ β̂.

Proof. Without loss of generality, we can assume that U coincides with T, i.e., there exists a slice map
α : T → G/K.

Consider the G-space A � f−1(ψ({t} × I)) ⊂ X. Clearly,

A ⊂ S × I for t ∈ S and A ∩ (S × I ∪ T × {0}) = G(t) × {0} for t /∈ S.

Note that A has single orbit type (Gt), and its orbit space is homeomorphic to I. Consequently, by virtue
of Proposition 6, A is equimorphic to G(t) × I. Hence there exists a slice map

γ : S × I ∪ T × {0} ∪ A → G/K

on S × I ∪ T × {0} ∪ A which coincides with β on S × I ∪ T × {0} and satisfies the condition βP ◦ f =
p ◦ γ.

According to Theorem 6, the natural G-map p : G/K → G/π−1(π(K)) is equivariantly locally soft,
and according to Theorem 7, there exists a G-extension β̂ : W → G/K of γ to a G-neighborhood

W ⊃ S × I ∪ T × {0} ∪ A

for which βP ◦ f = p ◦ β̂. Reducing, if necessary, the neighborhood W to a neighborhood of the form
(f−1 ◦ ψ)(V × I), we obtain the required slice map β̂.
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