13 research outputs found

    Russia\u27s Strategy of Success: Resources of Economy and Culture

    Get PDF

    Crowdsourcing Fungal Biodiversity : Revision of Inaturalist Observations in Northwestern Siberia

    Get PDF
    The paper presents the first analysis of crowdsourcing data of all observations of fungi (including lichens) and myxomycetes in Northwestern Siberia uploaded to iNaturalist.org to date (24.02.2022). The Introduction presents an analysis of fungal diversity crowdsourcing globally, in Russia, and in the region of interest. Materials and methods describe the protocol of uploading data to iNaturalist.org, the structure of the crowdsourcing community. initiative to revise the accumulated data. procedures of data analysis, and compilation of a dataset of revised crowdsourced data. The Results present the analysis of accumulated data by several parameters: temporal, geographical and taxonomical scope, observation and identification efforts, identifiability of various taxa, species novelty and Red Data Book categories and the protection status of registered observations. The Discussion provides data on usability of crowdsourcing data for biodiversity research and conservation of fungi, including pros and contras. The Electronic Supplements to the paper include an annotated checklist of observations of protected species with information on Red Data Book categories and the protection status, and an annotated checklist of regional records of new taxa. The paper is supplemented with a dataset of about 15 000 revised and annotated records available through Global Biodiversity Information Facility (GBIF). The tradition of crowdsourcing is rooted in mycological societies around the world, including Russia. In Northwestern Siberia, a regional mycological club was established in 2018, encouraging its members to contribute observations of fungi on iNaturalist.org. A total of about 15 000 observations of fungi and myxomycetes were uploaded so far, by about 200 observers, from three administrative regions (Yamalo-Nenetsky Autonomous Okrug, Khanty-Mansi Autonomous Okrug, and Tyumen Region). The geographical coverage of crowdsourcing observations remains low. However. the observation activity has increased in the last four years. The goal of this study consisted of a collaborative effort of professional mycologists invited to help with the identification of these observations and analysis of the accumulated data. As a result, all observations were reviewed by at least one expert. About half of all the observations have been identified reliably to the species level and received Research Grade status. Of those, 90 species (195 records) represented records of taxa new to their respective regions: 876 records of 53 species of protected species provide important data for conservation programmes. The other half of the observations consists of records still under-identified for various reasons: poor quality photographs, complex taxa (impossible to identify without microscopic or molecular study). or lack of experts in a particular taxonomic group. The Discussion section summarises the pros and cons of the use of crowdsourcing for the study and conservation of regional fungal diversity, and summarises the dispute on this subject among mycologists. Further research initiatives involving crowdsourcing data must focus on an increase in the quality of observations and strive to introduce the habit of collecting voucher specimens among the community of amateurs. The timely feedback from experts is also important to provide quality and the increase of personal involvement.Peer reviewe

    The Diversity of Parasitoids and Their Role in the Control of the Siberian Moth, <i>Dendrolimus sibiricus</i> (Lepidoptera: Lasiocampidae), a Major Coniferous Pest in Northern Asia

    No full text
    The Siberian moth, Dendrolimus sibiricus Tschetv., 1908 (Lepidoptera: Lasiocampidae) is a conifer pest that causes unprecedented forest mortality in Northern Asia, leading to enormous ecological and economic losses. This is the first study summarizing data on the parasitoid diversity and parasitism of this pest over the last 118 years (1905–2022). Based on 860 specimens of freshly reared and archival parasitoids, 16 species from two orders (Hymenoptera and Diptera) were identified morphologically and/or with the use of DNA barcoding. For all of them, data on distribution and hosts and images of parasitoid adults are provided. Among them, the braconid species, Meteorus versicolor (Wesmael, 1835), was documented as a parasitoid of D. sibiricus for the first time. The eastern Palaearctic form, Aleiodes esenbeckii (Hartig, 1838) dendrolimi (Matsumura, 1926), status nov., was resurrected from synonymy as a valid subspecies, and a key for its differentiation from the western Palaearctic subspecies Aleiodes esenbeckii ssp. esenbecki is provided. DNA barcodes of 11 parasitoid species from Siberia, i.e., nine hymenopterans and two dipterans, represented novel records and can be used for accurate molecular genetic identification of species. An exhaustive checklist of parasitoids accounting for 93 species associated with D. sibirisus in northern Asia was compiled. Finally, the literature and original data on parasitism in D. sibiricus populations for the last 83 years (1940–2022) were analysed taking into account the pest population dynamics (i.e., growth, outbreak, decline, and depression phases). A gradual time-lagged increase in egg and pupal parasitism in D. sibiricus populations was detected, with a peak in the pest decline phase. According to long-term observations, the following species are able to cause significant mortality of D. sibiricus in Northern Asia: the hymenopteran egg parasitoids Telenomus tetratomus and Ooencyrtus pinicolus; the larval parasitoids Aleiodes esenbeckii sp. dendrolimi, Cotesia spp., and Glyptapanteles liparidis; and the dipteran pupal parasitoids Masicera sphingivora, Tachina sp., and Blepharipa sp. Their potential should be further explored in order to develop biocontrol programs for this important forest pest

    Presentation, care and outcomes of patients with NSTEMI according to World Bank country income classification: the ACVC-EAPCI EORP NSTEMI Registry of the European Society of Cardiology.

    No full text
    corecore