1,079 research outputs found
Operational status of TAMA300 with the seismic attenuation system (SAS)
TAMA300 has been upgraded to improve the sensitivity at low frequencies after the last observation run in 2004. To avoid the noise caused by seismic activities, we installed a new seismic isolation system â- the TAMA seismic attenuation system (SAS). Four SAS towers for the test-mass mirrors were sequentially installed from 2005 to 2006. The recycled FabryâPerot Michelson interferometer was successfully locked with the SAS. We confirmed the reduction of both length and angular fluctuations at frequencies higher than 1 Hz owing to the SAS
Current status of Japanese detectors
Current status of TAMA and CLIO detectors in Japan is reported in this
article. These two interferometric gravitational-wave detectors are being
developed for the large cryogenic gravitational wave telescope (LCGT) which is
a future plan for detecting gravitational wave signals at least once per year.
TAMA300 is being upgraded to improve the sensitivity in low frequency region
after the last observation experiment in 2004. To reduce the seismic noises, we
are installing new seismic isolation system, which is called TAMA Seismic
Attenuation System, for the four test masses. We confirmed stable mass locks of
a cavity and improvements of length and angular fluctuations by using two SASs.
We are currently optimizing the performance of the third and fourth SASs. We
continue TAMA300 operation and R&D studies for LCGT. Next data taking in the
summer of 2007 is planned.
CLIO is a 100-m baseline length prototype detector for LCGT to investigate
interferometer performance in cryogenic condition. The key features of CLIO are
that it locates Kamioka underground site for low seismic noise level, and
adopts cryogenic Sapphire mirrors for low thermal noise level. The first
operation of the cryogenic interferometer was successfully demonstrated in
February of 2006. Current sensitivity at room temperature is close to the
target sensitivity within a factor of 4. Several observation experiments at
room temperature have been done. Once the displacement noise reaches at thermal
noise level of room temperature, its improvement by cooling test mass mirrors
should be demonstrated.Comment: 6 pages, 5 figures, Proceedings of GWDAW-1
Population properties of compact objects from the second LIGO-Virgo gravitational-wave transient catalog
We report on the population of 47 compact binary mergers detected with a false-alarm rate of (BBH) population not discernible until now. First, the primary mass spectrum contains structure beyond a power law with a sharp high-mass cutoff; it is more consistent with a broken power law with a break at 39.7-+9.120.3 M? or a power law with a Gaussian feature peaking at 33.1-+5.64.0 M? (90% credible interval). While the primary mass distribution must extend to ~65 M? or beyond, only 2.9-+1.73.5% of systems have primary masses greater than 45 M?. Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover,12%-44% of BBH systems have spins tilted by more than 90°, giving rise to a negative effective inspiral spin parameter, ceff. Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBHs with nonvanishing ceff| \u3e 0.01 are dynamically assembled. Third, we estimate merger rates, finding RBBH = 23.9-+8.614.3 Gpc-3 yr-1 for BBHs and RBNS = 320-+240490 Gpc-3 yr-1 for binary neutron stars. We find that the BBH rate likely increases with redshift (85% credibility) but not faster than the star formation rate (86% credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier
Electrochemical synthesis of iron-based superconductor FeSe films
The superconducting FeSe films were successfully fabricated using the
electrochemical synthesis. The composition ratio of Fe and Se can be controlled
by the electric potential and pH value. We found that the FeSe films deposited
at the electric potential -1.75 V and pH 2.3 show the superconducting
transition at 3.5 K. The establishment of this electrochemical synthesis
technique will provide many advantages for application.Comment: 15 pages, 6 figure
Recommended from our members
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of âŒ10-9 Mc2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run
Recommended from our members
Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates âȘ100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index âČ2
Recommended from our members
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2Ï”[120,800] M and mass ratios q=m2/m1Ï”[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins Ï1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of âŒ5 that reported after Advanced LIGO's first observing run
- âŠ