54 research outputs found

    Evaluation of antiplatelet activity of novel guanidine derivatives in the aspects of their adrenergic receptor activity

    Get PDF
    Designed acetamide derivatives based on guanidine and various heteroaryl carboxylic acids, were preliminary in vitro study of their adrenergic receptor affinity and anti-plateled effects. The obtained results have showed that exchange of 2,6-dichloro-phenyl substituent of guanidine into heteroaryl moieties, caused the decrease of receptor affinity, especially for α1-adrenoceptors. The observed receptor profile of activity for α2BAR was not changed compared to α1-ARs. Moreover, the observed effects on platelet aggregation induced by sub-threshold concentration of collagen and adrenaline strongly suggested that antiaggregant effect of N- (diaminomethylene)-2-(pyridin-3-yl)acetamide and N-(diaminomethylene)-2-(pyridin-4-yl)acetamide depends on their α2B-ARs antagonistic activity

    Antibacterial and cytocompatible coatings based on poly(adipic anhydride) for a Ti alloy surface

    Get PDF
    This paper describes a formation of hybrid coatings on a Ti–2Ta–3Zr–36Nb surface. This is accomplished by plasma electrolytic oxidation and a dip-coating technique with poly(adipic anhydride) ((C6_{6}H8_{8}O3_{3})n) that is loaded with drugs: amoxicillin (C16_{16}H19_{19}N3_{3}O5_{5}S), cefazolin (C14_{14}H14_{14}N8_{8}O4_{4}S3_{3}) or vancomycin (C66_{6}6H75_{75}Cl2_{2}N9_{9}O24_{24} · xHCl). The characteristic microstructure of the polymer was evaluated using scanning electron microscopy and confocal microscopy. Depending on the surface treatment, the surface roughness varied (between 1.53 μm and 2.06 μm), and the wettability was change with the over of time. X-ray photoelectron spectroscopy analysis showed that the oxide layer did not affect the polymer layer or loaded drugs. However, the drugs lose their stability in a phosphate-buffered saline solution after 6.5 h of exposure, and its decrease was greater than 7% (HPLC analysis). The stability, drug release and concentration of the drug loaded into the material were precisely analyzed by high-performance liquid chromatography. The results correlated with the degradation of the polymer in which the addition of drugs caused the percent of degraded polymer to be between 35.5% and 49.4% after 1 h of material immersion, depending on the mass of the loaded drug and various biological responses that were obtained. However, all of the coatings were cytocompatible with MG-63 osteoblast-like cells. The drug concentrations released from the coatings were sufficient to inhibit adhesion of reference and clinical bacterial strains (S. aureus). The coatings with amoxicillin showed the best results in the bacterial inhibition zone, whereas coatings with cefazolin inhibited adhesion of the above bacteria on the surface

    Antidepressant- and anxiolytic-like effects of new dual 5-HT_{1A} and 5-HT_{7} antagonists in animal models

    Get PDF
    The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazynine hydrochloride (HBK-14) and 2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl-4-(2- methoxyphenyl)piperazynine dihydrochloride (HBK-15) in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST) in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM) in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic α1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14-FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg) and (HBK-15-FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg). We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg) and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg) possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds

    Diet influences the bacterial and free fatty acid profiles of the cuticle of Galleria mellonella larvae.

    No full text
    The evolutionary success of insects is arguably due to their ability to build up a complex, highly-adaptable and very effective defense system against numerous pathogens, including entomopathogenic fungi. This system relies on the humoral immune system and cellular defense reactions. The first line of defense against biological pathogens is a cuticle formed of several layers. The cuticular lipids may contain hydrocarbons, free fatty acids (FFA), alcohols, waxes, glycerides, aldehydes and sterols. Cuticular fatty acids may also play a role in defending against fungal invasion. Our present findings show that the diet of insects can have a significant effect on their sensitivity and defense response to pathogens; for example, while G. mellonella larvae fed on beeswax had a similar appearance to those reared on a semi-artificial diet, they possessed a different cuticular free fatty acid (FFA) profile to those fed on a semi-artificial diet, and were less sensitive to Conidiobolus coronatus infection. It is possible that the presence of heneicosenoic acid (C21:1) and other long-chain free fatty acids (C22:0, C24:0, C26:0), as well as Brevibacillus laterosporus bacteria, on the cuticle of larvae fed on beeswax, plays a protective role against fungal invasion. Insect pests represent a global problem. An understanding of the basic mechanisms underlying the fungal infection of insects might provide a clearer insight into their defenses, thus allowing the design of more effective, and environmentally-friendly, means of controlling them. The greater wax moth is an excellent model for the study of immunology resistance. Knowledge of the influence of diet on pathogen resistance in insects can be also useful for creating a model of human diseases caused by pathogens, such as Candia albicans

    Harman and norharman, metabolites of entomopathogenic fungus Conidiobolus coronatus (Entomopthorales), disorganize development of Galleria mellonella (Lepidoptera) and affect serotonin-regulating enzymes.

    No full text
    Naturally occurring entomopathogenic fungi such as Conidiobolus coronatus are important regulatory factors of insect populations. GC-MS analysis of fungal cell-free filtrates showed that C. coronatus synthesizes two β- carboline alkaloids: harman and norharman. Significantly higher levels of both alkaloids are produced by C. coronatus in minimal postincubation medium than in rich medium. The beta-carboline alkaloids may have an effect on the nervous system of insects and their behavior. Harman and norharman were applied to Galleria mellonella larvae (a parasite of honeybees) either topically or mixed with food. Larvae received alkaloids in three concentrations: 750, 1000 or 1250 ppm. The effect on the survival and further development of larvae was examined. Both harman and norharman delayed pupation and adult eclosion, and inhibit total monoamine oxidase activity. In addition, they increased the serotonin concentration and decreased the monoamine oxidase A level in the heads of the moths. It is likely that the alkaloids were metabolized by the insects, as their effect wore off 24 hours after topical application. This is the first study to show that C. coronatus produces alkaloids. Its aim was to identify the actions of β-carboline alkaloids on insect development and serotonin-regulating enzymes. Knowledge of the potential role of harman and norharman in the process of fungal infection might lead to the development of more effective and environmentally-friendly means of controlling insect pests

    Octanoic Acid—An Insecticidal Metabolite of <i>Conidiobolus coronatus</i> (Entomopthorales) That Affects Two Majors Antifungal Protection Systems in <i>Galleria mellonella</i> (Lepidoptera): Cuticular Lipids and Hemocytes

    No full text
    The food flavour additive octanoic acid (C8:0) is also a metabolite of the entomopathogenic fungus Conidiobolus coronatus, which efficiently infects and rapidly kills Galleria mellonella. GC-MS analysis confirmed the presence of C8:0 in insecticidal fraction FR3 extracted from C. coronatus filtrate. Topical administration of C8:0 had a dose-dependent effect on survival rates of larvae but not on pupation or adult eclosion times of the survivors. Topically applied C8:0 was more toxic to adults than larvae (LD100 for adults 18.33 ± 2.49 vs. 33.56 ± 2.57 µg/mg of body mass for larvae). The administration of C8:0 on the cuticle of larvae and adults, in amounts corresponding to their LD50 and LD100 doses, had a considerable impact on the two main defense systems engaged in protecting against pathogens, causing serious changes in the developmental-stage-specific profiles of free fatty acids (FFAs) covering the cuticle of larvae and adults and damaging larval hemocytes. In vitro cultures of G. mellonella hemocytes, either directly treated with C8:0 or taken from C8:0 treated larvae, revealed deformation of hemocytes, disordered networking, late apoptosis, and necrosis, as well as caspase 1–9 activation and elevation of 8-OHdG level. C8:0 was also confirmed to have a cytotoxic effect on the SF-9 insect cell line, as determined by WST-1 and LDH tests

    Hybrid Pectin-Based Sorbents for Cesium Ion Removal

    No full text
    In this paper, beads-shaped hybrid sorbents composed of pectin and Prussian blue were prepared. Various ratios of pectin and Prussian blue in hybrid sorbents were tested. Obtained sorbents had high and roughly constant sorption capacity in a broad pH range (4&ndash;10), in which also the swelling index and stability of sorbents were satisfactory. The preliminary sorption studies proved that almost 100% of cesium removal efficiency may be achieved by using the proper sorbent dose. The sorption capacity of the hybrid sorbent with a 1:1 ratio of pectin to Prussian blue equaled q = 36.5 &plusmn; 0.8 mg/g (dose 3 g/L, pH = 6, temp. = 22 &plusmn; 1 &deg;C, t = 24 h). The obtained results showed that the prepared hybrid pectin-based sorbents are promising for cesium ions removal

    The Entomopathogenic Fungus <i>Conidiobolus coronatus</i> Has Similar Effects on the Cuticular Free Fatty Acid Profile of Sensitive and Resistant Insects

    No full text
    The mechanisms underlying the recognition of a susceptible host by a fungus and the role of cuticular compounds (CCs) in this process remain unclear; however, accumulated data suggest that this is influenced to a great degree by cuticular lipids. Two insect species differing in their sensitivity to fungal infection, viz. the highly sensitive Galleria mellonella Linnaeus (Lepidoptera: Pyralidae) and the resistant Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae), exhibited significant qualitative and quantitative changes in cuticular free fatty acid (FFA) profiles after exposure to Conidiobolus coronatus (Constantin) Batko (Entomopthorales). Despite being systematically distant, leading different lifestyles in different habitats, both insect species demonstrated similar changes in the same FFAs following exposure to the fungus (C12:0, C13:0, C14:0, C15:0, C16:1, C16:0, C18:1, C18:0), suggesting that these are involved in a contact-induced defense response. As it was not possible to distinguish the share of FFAs present in the conidia that were attached to the cuticle from the FFAs of the cuticle itself in the total number of extracted FFAs, further research is necessary
    corecore