39 research outputs found

    Molecular evolution of the leptin exon 3 in some species of the family Canidae

    Get PDF
    The structure of the leptin gene seems to be well conserved. The polymorphism of this gene in four species belonging to the Canidae family (the dog (Canis familiaris) – 16 different breeds, the Chinese racoon dog (Nyctereutes procyonoides procyonoides), the red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus)) were studied with the use of single strand conformation polymorphism (SSCP), restriction fragment length polymorphism (RFLP) and DNA sequencing techniques. For exon 2, all species presented the same SSCP pattern, while in exon 3 some differences were found. DNA sequencing of exon 3 revealed the presence of six nucleotide substitutions, differentiating the studied species. Three of them cause amino acid substitutions as well. For all dog breeds studied, SSCP patterns were identical

    One-carbon metabolism and nonalcoholic fatty liver disease: The crosstalk between nutrients, microbiota, and genetics

    Get PDF
    The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Its etiology includes nutritional, genetic, and lifestyle factors. Several mechanisms may link onecarbon metabolism – the associated metabolic pathways of folate, methionine, and choline – to the onset of NAFLD. In this review, we attempted to assess how choline, folate, methionine, and betaine affect NAFLD development, mainly through their role in the secretion of very low-density lipoproteins (VLDL) from the liver. We also reviewed recent articles that have described the relation between microbiota metabolism and NAFLD progression. Moreover, we describe the effect of single-nucleotide polymorphisms (SNP) in genes related to one-carbon metabolism and disease prevalence. We additionally seek SNP identified by genome-wide associations that may increase the risk of this disease. Even though the evidence available is not entirely consistent, it seems that the concentrations of choline, methionine, folate, and betaine may affect the progression of NAFLD. Since there is no effective therapy for NAFLD, further investigations into the link between nutrition, gut microbiota, genetic factors, and NAFLD are still necessary, with a particular emphasis on methyl donors

    Maternal protein and folic acid intake during gestation does not program leptin transcription or serum concentration in rat progeny

    Get PDF
    Maternal nutrition during gestation influences the development of the fetus, thereby determining its phenotype, including nutrient metabolism, appetite, and feeding behavior. The control of appetite is a very complex process and can be modulated by orexigenic and anorexigenic mediators such as leptin, which is involved in the regulation of energy homeostasis by controlling food intake and energy expenditure. Leptin transcription and secretion are regulated by numerous factors, nutrition being one of them. The present study was designed to test whether maternal nutrition can permanently affect leptin gene transcription and leptin serum concentration in rat progeny. Moreover, we analyzed whether leptin expression and secretion in response to high-fat postweaning feeding depends on the maternal diet during gestation. Pregnant rats were fed either a normal protein, normal folic acid diet (the AIN-93 diet); a protein-restricted, normal folic acid diet; a protein-restricted, folic acid-supplemented diet; or a normal protein, folic acid-supplemented diet. After weaning, the progeny was fed either the AIN-93 diet or a high-fat diet. Neither maternal nutrition nor the postweaning diet significantly affected Lep transcription. High-fat feeding after weaning was associated with higher serum leptin concentration, but the reaction of an organism to the fat content of the diet was not determined by maternal nutrition during gestation. There was no correlation between Lep mRNA level and serum leptin concentration. Global DNA methylation in adipose tissue was about 30% higher in rats fed postnatally the high-fat diet (P < 0.01). Our study showed that the protein and folic acid content in the maternal diet had no significant programming effect on Lep transcription and serum leptin concentration in the rats

    Guide for Current Nutrigenetic, Nutrigenomic, and Nutriepigenetic Approaches for Precision Nutrition Involving the Prevention and Management of Chronic Diseases Associated with Obesity

    Get PDF
    Chronic diseases, including obesity, are major causes of morbidity and mortality in most countries. The adverse impacts of obesity and associated comorbidities on health remain a major concern due to the lack of effective interventions for prevention and management. Precision nutrition is an emerging therapeutic approach that takes into account an individual's genetic and epigenetic information, as well as age, gender, or particular physiopathological status. Advances in genomic sciences are contributing to a better understanding of the role of genetic variants and epigenetic signatures as well as gene expression patterns in the development of diverse chronic conditions, and how they may modify therapeutic responses. This knowledge has led to the search for genetic and epigenetic biomarkers to predict the risk of developing chronic diseases and personalizing their prevention and treatment. Additionally, original nutritional interventions based on nutrients and bioactive dietary compounds that can modify epigenetic marks and gene expression have been implemented. Although caution must be exercised, these scientific insights are paving the way for the design of innovative strategies for the control of chronic diseases accompanying obesity. This document provides a number of examples of the huge potential of understanding nutrigenetic, nutrigenomic, and nutriepigenetic roles in precision nutrition

    Folic Acid and Protein Content in Maternal Diet and Postnatal High-Fat Feeding Affect the Tissue Levels of Iron, Zinc, and Copper in the Rat

    Get PDF
    Although maternal, fetal, and placental mechanisms compensate for disturbances in the fetal environment, any nutritional inadequacies present during pregnancy may affect fetal metabolism, and their consequences may appear in later life. The aim of the present study is to investigate the influence of maternal diet during gestation on Fe, Zn, and Cu levels in the livers and kidneys of adult rats. The study was carried out on the offspring (n = 48) of mothers fed either a protein-balanced or a protein-restricted diet (18% vs. 9% casein) during pregnancy, with or without folic acid supplementation (0.005- vs. 0.002-g folic acid/kg diet). At 10 weeks of age, the offspring of each maternal group were randomly assigned to groups fed either the AIN-93G diet or a high-fat diet for 6 weeks, until the end of the experiment. The levels of Fe, Zn, and Cu in the livers and kidneys were determined by the F-AAS method. It was found that postnatal exposure to the high-fat diet was associated with increased hepatic Fe levels (p < 0.001), and with decreased liver Zn and Cu contents (p < 0.01 and p < 0.05, respectively), as well as with decreased renal Cu contents (p < 0.001). Moreover, the offspring’s tissue mineral levels were also affected by protein and folic acid content in the maternal diet. Both prenatal protein restriction and folic acid supplementation increased the liver Zn content (p < 0.05) and the kidney Zn content (p < 0.001; p < 0.05, respectively), while folic acid supplementation resulted in a reduction in renal Cu level (p < 0.05). Summarizing, the results of this study show that maternal dietary folic acid and protein intake during pregnancy, as well as the type of postweaning diet, affect Fe, Zn, and Cu levels in the offspring of the rat. However, the mechanisms responsible for this phenomenon are unclear, and warrant further investigation

    Protein and folic acid content in the maternal diet determine lipid metabolism and response to high-fat feeding in rat progeny in an age-dependent manner

    Get PDF
    Maternal diet during gestation can exert a long-term effect on the progeny’s health by programming their developmental scheme and metabolism. The aim of this study is to analyze the influence of maternal diet on lipid metabolism in 10- and 16-week-old rats. Pregnant dams were fed one of four diets: a normal protein and normal folic acid diet (NP-NF), a protein-restricted and normal folic acid diet (PR-NF), a protein-restricted and folic-acid-supplemented diet (PR-FS), or a normal protein and folic-acid-supplemented diet (NP-FS). We also tested whether prenatal nutrition determines the reaction of an organism to a postweaning high-fat diet. Blood biochemistry and biometrical parameters were evaluated. The expression patterns of PPARα, PPARγ, and LXRα in the liver and adipose tissue were examined by real-time PCR. In the 10-week-old, rats folic acid supplementation of the maternal diet was associated with reduced circulating glucose and total cholesterol concentrations (P < 0.01 and P < 0.001, respectively). Neither prenatal diets nor postnatal feeding affected blood insulin concentrations. In the 16-week-old rats, body weight, abdominal fat mass and central adiposity were reduced in the progeny of the folic acid–supplemented dams (P < 0.01, P < 0.001 and P < 0.01, respectively). Maternal protein restriction had no effect on biometry or blood biochemical parameters. Folic acid supplementation of the maternal diet was associated with reduced expression of PPARα, PPARγ, and LXRα in the liver (P < 0.001). Reduced protein content in the maternal diet was associated with increased PPARα mRNA level in the liver (P < 0.001) and reduced LXRα in adipose tissue (P < 0.01). PPARα and PPARγ transcription in the liver, as well as LXRα transcription in adipose tissue, was also dependent on interaction effects between prenatal and postnatal diet compositions. PPARγ transcription in the liver was correlated with the abdominal fat mass, body weight, and calorie intake, while PPARγ transcription in adipose tissue was correlated with reduced body weight and calorie intake. Total serum cholesterol concentration was correlated with LXRα transcription in the liver. Folic acid supplementation of the maternal diet may have favorable effects for lipid metabolism in the progeny, but these effects are modified by the postnatal diet and age. Furthermore, the expression of LXRα, PPARα, and PPARγ in the liver and adipose tissue largely depends on the protein and folic acid content in the maternal diet during gestation. However, the altered transcription profile of these key regulators of lipid metabolism does not straightforwardly explain the observed phenotype

    The Effect of Habitual Fat Intake, IL6 Polymorphism, and Different Diet Strategies on Inflammation in Postmenopausal Women with Central Obesity

    No full text
    The hypothesis that habitual fat intake, the IL6 genotype, the Mediterranean diet or the central European diet for 16 weeks affect biomarkers of inflammation in centrally obese postmenopausal women, was tested in a randomized controlled trial. Dietary intake was assessed using a three-day food diary. Lipid parameters were measured using a Beckman Coulter AU analyzer. Transcription of TNF and IL6 genes was analyzed in peripheral blood mononuclear cells using real-time PCR. Concentrations of tumor necrosis factor alpha (TNF&alpha;) and interleukin 6 (IL6) were measured with ELISA. rs1800795 polymorphism of IL6 was analyzed using hydrolyzing probes. Higher energy intake from fat was associated with higher IL6 levels (p &lt; 0.05). Significantly (p &lt; 0.01) lower total cholesterol (T-C) and low-density lipoprotein cholesterol (LDL-C) concentrations were observed in the GG IL6 rs1800795 genotype group. Both diets significantly (p &lt; 0.001) decreased TNF&alpha; concentrations. Neither IL6 gene transcription levels nor blood IL6 concentrations were affected by them. Our findings confirm that habitual fat intake may affect inflammation. The rs1800795 IL6 polymorphism alone did not significantly affect body weight or body composition in aimed group, but C-allele carriers had higher levels of T-C and LDL-C. This polymorphism did not affect inflammation. Both diets may lead to a decrease in TNF&alpha; concentration

    The Effect of 3-Week Betaine Supplementation on Blood Biomarkers of Cardiometabolic Health in Young Physically Active Males

    No full text
    Betaine (BET) supplementation decreases homocysteine concentration in plasma, but it may also have an adverse effect on health by increasing blood lipid concentrations, at least in overweight and obese individuals. The aim of this study was to evaluate the effect of BET supplementation on the lipid profile and concentrations of homocysteine, inflammatory cytokines, and liver enzymes in physically active, healthy males. This was a randomized, placebo (PL)-controlled, double-blinded, crossover trial. BET (2.5 or 5.0 g/d) was administered for 21 days. Before and after supplementation with BET or PL, anthropometric measurements and blood were collected in a fasted state. Our results show that BET supplementation significantly decreased homocysteine concentration (from 17.1 &plusmn; 4.0 &mu;mol/L before BET to 15.6 &plusmn; 3.5 &mu;mol/L after BET, p = 0.009, &eta;2 = 0.164). However, the intervention had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triacylglycerol, interleukins 1&beta; and 6, and tumour necrosis factor &alpha; concentrations, or alanine and aspartate activities. In addition, there were no interactions between the MTHFR genotype and BET dose. In conclusion, BET supplementation may be beneficial for homocysteine concentration in healthy, physically active males, with no detrimental effect on lipid profile

    The Association between Fat Taste Sensitivity, Eating Habits, and Metabolic Health in Menopausal Women

    No full text
    The aim of our study was to evaluate the associations between sensitivity to fat taste, eating habits and BMI value in a sample of menopausal Polish women. In a population of 95 women, fat taste thresholds with oleic acid were determined, allowing us to classify each woman as a hypersensitive or hyposensitive taster. Eating habits were assessed using a validated KomPAN questionnaire for food frequency. Dietary intake was evaluated based on a food diary. Selected biochemical parameters were measured using a Konelab20i biochemical analyzer. Anthropometric parameters and blood pressure were also measured. Twenty-two menopausal women were classified as hyposensitive to fat taste and 73 as hypersensitive. The hyposensitive tasters were significantly older (p = 0.006), with the majority of them (92%) being postmenopausal (p &lt; 0.001); this group had significantly higher BMI values (p &lt; 0.001) and other adiposity indicators compared to their hypersensitive counterparts. The hyposensitive tasters had higher blood pressure (systolic blood pressure; SBP p = 0.030; diastolic blood pressure; DBP p = 0.003), glucose (p = 0.011) and triacylglycerols levels than the hypersensitive tasters (p = 0.031). Almost half of them had diagnosed metabolic syndrome. Daily eating occasions were associated with low oral fatty acid sensitivity, irrespective of age (p = 0.041) and BMI value (p = 0.028). There were also significant associations between frequency of consumption of meats and eggs, as well as snacks and fast foods and low oral fatty acid sensitivity before adjustment for potential confounders (both associations p &lt; 0.05), which remained after adjustment for age (both associations p &lt; 0.05), but not after adjustment for BMI. A multivariate logistic regression analysis showed that higher BMI value (p = 0.003), along with postmenopausal status (p = 0.003), were associated with low fat taste sensitivity irrespective of age and consumed percentage energy from fat. Postmenopausal status and BMI are associated with low fat taste sensitivity. Fat hyposensitivity may also play a role in eating habits, leading to increased eating occasions and favoring certain types of food. These eating habits may determine increased body weight and the occurrence of metabolic syndrome in mid-life women, especially those who have undergone menopause and have been exposed to the physiological changes which are conducive to these relationships
    corecore