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 Abstract 
 Chronic diseases, including obesity, are major causes of morbidity and mortality in most 
countries. The adverse impacts of obesity and associated comorbidities on health remain a 
major concern due to the lack of effective interventions for prevention and management. Pre-
cision nutrition is an emerging therapeutic approach that takes into account an individual’s 
genetic and epigenetic information, as well as age, gender, or particular physiopathological 
status. Advances in genomic sciences are contributing to a better understanding of the role 
of genetic variants and epigenetic signatures as well as gene expression patterns in the de-
velopment of diverse chronic conditions, and how they may modify therapeutic responses. 
This knowledge has led to the search for genetic and epigenetic biomarkers to predict the risk 
of developing chronic diseases and personalizing their prevention and treatment. Addition-
ally, original nutritional interventions based on nutrients and bioactive dietary compounds 
that can modify epigenetic marks and gene expression have been implemented. Although 
caution must be exercised, these scientific insights are paving the way for the design of in-
novative strategies for the control of chronic diseases accompanying obesity. This document 
provides a number of examples of the huge potential of understanding nutrigenetic, nutri-
genomic, and nutriepigenetic roles in precision nutrition.  © 2017 S. Karger AG, Basel 

 Introduction 

 Obesity is a global epidemic with more than 35% of the world population (2,100 million 
people) being estimated as either overweight or obese according to body mass index (BMI) 
 [1] . Obesity is associated with a large number of health problems including dyslipidemias, 
cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver 
disease (NAFLD), and some types of cancer, with important economic and social costs  [2] . 
Systematic analyses have revealed that obesity and overweight caused 3.4 million deaths in 
2010  [3] . 

  The long-term consumption of unbalanced diets (high content of calories, fat, fructose 
and high omega-6/omega-3 fatty acid ratio), coupled with the adoption of a sedentary life-
style, contributes to the development of obesity and associated complications  [4, 5] . Also, it 
is now recognized that interactions of genetic and epigenetic signatures with environmental 
factors (dietary intake or physical activity) play an important role in determining individual 
phenotypes  [6, 7] . Recent advances in genomic sequencing and large cohort studies are 
enabling clarification of the involvement and the interplay of these factors in chronic disorders 
including obesity, which open a new field to customize intervention strategies  [8, 9] . Precision 
medicine refers to disease therapeutics based on interindividual differences, such as genetic 
profile, phenotype, gender, microbiome, and environmental features  [10] . In this context, 
precision nutrition is an important part of precision medicine that may aid in establishing 
nutritional guidelines for specific subgroups instead of conventional population-based advice 
 [11] . 

  Herein, we review genetic and epigenetic biomarkers related to obesity, dyslipidemia, 
T2DM, CVD, NAFLD, and some types of cancer that may serve to understand disease etiology 
and outline future therapeutic targets and treatments. In this sense, responses to dietary 
interventions, mainly aimed at weight reduction and management of metabolic disorders 
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(i.e., insulin resistance, dyslipidemias, fatty liver), are screened for their interaction with 
genetic and epigenetic features. Also, nutritional interventions based on certain specific 
nutrients and bioactive dietary compounds that can modify epigenetic marks and gene 
expression are reviewed. The integration of the emerging knowledge derived from different 
genetic and epigenetic approaches is required in order to outline new therapeutic tools for 
advancing in the prevention and personalized management of chronic diseases through 
precision nutrition ( Fig. 1 ).

  Genetic Background and Nutritional Prescriptions 

 International genome projects using whole-genome sequencing analyses have provid-
ed a comprehensive description of genetic variations across the human genome including sin-
gle nucleotide polymorphisms (SNPs), copy number variations (CNVs), and other structural 
variants  [12] . In recent years, nutrigenetic studies have allowed the identification of genetic 
variants associated with disease susceptibility through interaction with dietary factors  [13] . 

SNPs and other structural variants
DNA methylation, histone
modifications, and miRNA

expression
Gene expression profiles

Age, gender, ethnicity
Physiopathological status

Microbiome
Nutrition (dietary intake,
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  Fig. 1.  Nutrigenetic, nutrigeno-
mic, and nutriepigenetic ap-
proaches for precision nutrition 
to the prevention and manage-
ment of obesity and associated 
chronic diseases. 
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These scientific advances are contributing to the prevention and treatment of chronic diseases 
since they potentially allow to (1) predict individual risks, (2) explain their etiology, and (3) 
enable the personalization of their nutritional management  [14, 15] .

  Indeed, SNPs (or more generally speaking, SNV, single nucleotide variants, a term that 
comprises both common and low-frequency alleles) are by far the most widely studied 
genetic variation in the field of precision nutrition. In this sense, several SNPs have been 
associated with common chronic diseases through interactions with the intakes of macro- 
and micronutrients, or with the consumption of particular foods and dietary patterns 
( Table 1 ). Examples include polymorphisms in genes related to taste perception including 
the sweet taste receptor ( TAS1R2 )  [16]  and cluster of differentiation 36 ( CD36 )  [17] , which 
were associated with dyslipidemia in Mexican subjects consuming high amounts of carbo-
hydrates and fats, respectively. Common variants in genes regulating homocysteine metab-
olism, such as methylenetetrahydrofolate reductase ( MTHFR ) ,  and methionine synthase 
( MTR ), have been linked to increased risk for breast cancer in individuals with low intakes 
of folate, vitamin B 6 , and vitamin B 12   [18] . Also, it has been reported that in addition to 

 Table 1. Nutrigenetic examples of SNPs-diet interactions involved in disease risk

Genes Polymorphisms Alleles Diet interactions Putative disease risks Ref.

TAS1R2 rs35874116 G High carbohydrate Hypertriglyceridemia [16]
CD36 rs1761667 A High fat, SFA Hypercholesterolemia [17]
MTHFR rs1801133 T Low folate, vitamin B6, and 

vitamin B12

Breast cancer [18]

MTR rs1805087 G Low folate, vitamin B6, and 
vitamin B12

Breast cancer [18]

VDR rs1544410 A Low calcium Osteoporosis [22]
APOC3 rs5128 C Western dietary pattern Metabolic syndrome [23]
APOA1 rs670, rs5069 A, T Western dietary pattern Metabolic syndrome [24]
CYP1A2 rs762551 C Moderate and heavy coffee 

drink
Hypertension, CVD [25, 26]

FTO rs9939609 T Low adherence to 
Mediterranean diet

T2DM [106]

MC4R rs17782313 T Low adherence to 
Mediterranean diet

T2DM [106]

FTO rs9939609 A High fat Obesity [107, 108]
FTO rs8050136 A High carbohydrat e Obesity [109]
MC4R rs12970134 A Western dietary pattern 

and high SFA
Metabolic syndrome [110]

APOB rs512535 G High fat Metabolic syndrome [111]
TCF7L2 rs7903146 T High dessert and milk T2DM [112]
TCF7L2 rs7903146 T High SFA Metabolic syndrome [113]
LCT rs4988235 T High dairy products Obesity [114]
PPARG rs1801282 G High fat Obesity [115]
PNPLA3 rs739409 G High carbohydrate NAFLD [116]
TXN rs2301241 T Low vitamin E Abdominal obesity [117]

 MTHFR, methylenetetrahydrofolate reductase; MTR, methionine synthase; FTO, fat mass and obesity asso-
ciated; MC4R, melanocortin 4 receptor; APOC3, apolipoprotein C3; APOA1, apolipoprotein A1; APOB, apoli-
poprotein B; CD36, cluster of differentiation 36; TCF7L2, transcription factor 7 like 2; LCT, lactase; PPARG, 
peroxisome proliferator activated receptor gamma; PNPLA3, patatin like phospholipase domain containing 
3; TAS1R2, taste 1 receptor member 2; VDR, vitamin D receptor; CYP1A2, cytochrome P450 family 1 subfamily 
A member 2; TXN, thioredoxin; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; T2DM, type 
2 diabetes mellitus; CVD, cardiovascular disease.
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sunlight, vitamin D status can also be influenced by several polymorphisms in vitamin D 
pathway genes  [19] , thereby modulating its biological functions in the organism. Interest-
ingly, SNPs in the vitamin D receptor ( VDR ) gene, which affect vitamin D availability  [20, 21] , 
have been associated with osteoporosis predisposition in postmenopausal women with low 
calcium intakes  [22] . Moreover, SNPs in genes encoding lipid proteins such as apolipoprotein 
C3 ( APOC3 ) and apolipoprotein A1 ( APOA1 ) conferred a higher risk of metabolic syndrome 
in subjects with a Western dietary pattern  [23, 24] . Likewise, a genetic variant in the cy-
tochrome P450 family 1 subfamily A member 2 ( CYP1A2 ) gene was associated with an in-
creased risk of hypertension and CVD in moderate and heavy coffee drinkers  [25, 26] . Addi-
tionally, studies using genetic risk scores (GRS) have examined the cumulative effect of SNPs 
on diet interactions and disease susceptibility. Thus, macronutrient intake was shown to 
modify the association of an obesity GRS with greater values of adiposity  [27] . Significant 
interactions between saturated fat intake and obesity GRS were also found to modulate BMI 
in two American populations  [28] . Furthermore, obesity GRS interacted with the intake of 
sugar-sweetened beverages  [29] , and fried food consumption  [30]  in relation to BMI and 
obesity in several cohort studies. 

  Nutrigenetics is defined as the science that studies the effect of genetic variation on 
dietary response  [13] . Thus, SNPs-diet interactions have also been reported to be involved 
in the differential responses to nutritional interventions aimed at restricting total caloric 
intake or modifying energy derived from fat, protein, or carbohydrates ( Table 2 ). In this 
sense, studies performed in a range of populations have investigated the effects of several 
SNPs on weight loss, weight regain and metabolic improvements concerning serum lipid 
levels and insulin resistance ( Table 2 ). These investigations include polymorphisms in or 
near genes involved in the regulation of food intake, lipid and lipoprotein metabolism, insulin 
signaling, glucose homeostasis, inflammatory response, amino acid metabolism, and cir-
cadian cycle ( Table 2 ). Regarding the effects of GRS on dietary responses, individuals with 
lower GRS for T2DM had greater improvements in insulin resistance and β-cell function 
when consuming a low-protein diet  [31] . Conversely, subjects with higher GRS for glucose 
disorders had greater increases in fasting glucose when consuming a high-fat diet  [32] . 
Moreover, a GRS built from genes identified by genome-wide association studies, partially 
explained the variation in triglyceride changes in response to omega-3 fatty acid supplemen-
tation  [33] .

  Additionally, SNPs have been included in nutrigenetic tests with the aim of evaluating 
their impact on changing eating habits. For example, it was shown that gene-based person-
alized nutrition targeting the apolipoprotein E ( APOE ) gene was more effective in reducing 
saturated fat intake compared with standard dietary advice  [34] . Also, greater Mediterranean 
diet scores were reported among participants who received gene-based personalized 
nutrition targeting specific variants in five nutrient-responsive genes compared with those 
who received dietary advice on the basis of current diet plus phenotype  [35] . Furthermore, it 
was reported that disclosure of genetic information regarding angiotensin I converting 
enzyme ( ACE ) genotype for personalized nutrition resulted in greater changes in sodium 
intake compared to general population-based dietary advice  [36] . Likewise, individuals who 
were informed about their fatty acid desaturase 1 ( FADS1 ) genotype were more aware of the 
role of omega-3 fatty acids in health, and reported fewer barriers to their consumption, 
compared with those who did not receive their personal genetic information  [37] . These 
findings are related to a better understanding, awareness, and usefulness of dietary recom-
mendations based on genetics than general dietary advice  [38] . 

  In addition to SNPs, previous studies have found evidence of an association between 
CNVs and the risk of metabolic diseases. For example, CNV in the leptin receptor ( LEPR)  
gene was found to be associated with metabolic traits and the risk of T2DM  [39] . Moreover, 
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low copy number of the salivary amylase alpha 1A ( AMY1A ) gene has been related to a 
predisposition for obesity, suggesting a link between carbohydrate metabolism and obesity 
 [40, 41] . Another DNA biomarker is the pentanucleotide (CTTTA) Del/Ins variant in the 
3 ′ -UTR of the  LEPR  gene, which has been associated with the risk of T2DM  [42] . Further 
studies are needed to assess possible interactions between these genetic variants and 
dietary intake in relation to disease risk as well as their effects on dietary response, but such 
investigations provide examples of the direction in which future research in the field should 
be headed.

  Diet and Gene Expression Profiles 

 Nutrition may exert an impact on health outcomes by directly affecting the expression of 
genes that regulate critical metabolic pathways  [43] . In this sense, the science of nutrige-
nomics studies the role of nutrients and bioactive food compounds in gene expression and, 

 Table 2. Certain nutrigenetic trials analyzing SNPs-diet interactions involved in the differential responses to 
nutritional interventions

Genes Polymorphisms Alleles Diet interactions Dietary responses Ref.

FTO rs1558902 A High protein Greater weight loss [118]
FTO rs1558902 A Low fat Less reductions in insulin and 

HOMA-IR
[119]

TCF7L2 rs7903146 T High fat Smaller weight loss and HOMA-IR [120]
APOA5 rs964184 G Low fat Greater reduction in TC and LDL-c [121]
GIPR rs2287019 T Low fat Greater weight loss and greater 

decreases in glucose, insulin and 
HOMA-IR

[122]

CETP rs3764261 C High fat Larger increases in HDL-c and 
decreases in triglycerides

[123]

DHCR7 rs12785878 T High protein Greater decreases in insulin and 
HOMA-IR

[124]

LIPC rs2070895 A Low fat Higher decreases in TC and LDL-c 
and a lower increase 
in HDL-c

[125]

PPM1K rs1440581 C High fat Less weight loss and smaller 
decreases in insulin and HOMA-IR

[126]

TFAP2B rs987237 G High protein Higher weight regains [127]
IRS1 rs2943641 C High carbohydrate Greater decreases in insulin, 

HOMA-IR and weight loss
[128]

PCSK7 rs236918 G High carbohydrate Higher decreases in insulin and 
HOMA-IR

[129]

MTNR1B rs10830963 G High protein Lower weight loss in women [130]
IL6 rs2069827 C Mediterranean diet Lower weight gains [131]

FTO, fat mass and obesity associated; TCF7L2, transcription factor 7 like 2; APOA5, apolipoprotein A5; 
GIPR, gastric inhibitory polypeptide receptor; CETP, cholesteryl ester transfer protein; DHCR7, 7-de-
hydrocholesterol reductase; LIPC, lipase C, hepatic type; PPM1K, protein phosphatase, Mg2+/Mn2+ dependent 
1K; TFAP2B, transcription factor AP-2 beta; IRS1, insulin receptor substrate 1; PCSK7, proprotein convertase 
subtilisin/kexin type 7; MTNR1B, melatonin receptor 1B; IL6, interleukin-6; TC, total cholesterol; LDL-c, 
low-density lipoprotein cholesterol; HDL-c, high-density lipoprotein cholesterol; HOMA-IR, homeostasis 
model assessment of insulin resistance. 
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consequently, on the proteome and the metabolome  [44] . To date, a large number of studies 
have evaluated the effect of different dietary factors on gene expression profiles, which are 
related to disease susceptibilities ( Table 3 ). With regard to dietary patterns, subjects following 
a Western dietary pattern, characterized by high intakes of refined grain products, desserts, 
sweets, and processed meats, showed a gene expression profile associated with inflammatory 
response and cancer signaling compared to those who consumed high amounts of vegetables, 
fruits, and whole grain products  [45] . Similarly, pathway analyses revealed that high meat 

 Table 3. Nutrigenomic examples of interactions between dietary intakes and gene expression profiles in-
volved in disease risk

Dietary factors Target genes Expression 
changes

Putative disease risks Ref.

Low protein NR1H3 – T2DM [47]
Low protein HSD11B1, PCK1 + T2DM [47]
Choline and folate deficiency PPARGA – NAFLD [48]
Chromium deficiency Insulin signaling genes – T2DM [49]
Selenium deficiency TLR2, ICAM1 + CVD [50]
Vitamin B12 deficiency SREBF1, LDLR + Dyslipidemia [51]
Vitamin A deficiency GATA4 – CVD [52]
High fat and high sugar LEP, SREBF1, PLIN + Obesity [65]
High fat OPRM1, PENK, DAT + Obesity [74]
Low protein CYP7A1 – Dyslipidemia [75]
Selenium deficiency VHL – Cancer [79]
Vitamin D deficiency NFKBIA – T2DM [80]
High SFA TNFA, IL6 + CVD [132]
High SFA Proinflammatory

“obesity-linked” genes
+ Obesity-related inflammation [133]

High SFA PPARGC1A – NAFLD [134]
High SFA ADGRE1 + Obesity-related inflammation [134]
High fat LEPR, NPY + Obesity [135]
High fat TH, DRD4 + Obesity [136]
High fat rich in lard OPN, ADGRE1, TNFA, 

NFKB1
+ Obesity-related inflammation 

and insulin resistance
[137]

High fat rich in lard OPN, TLR2, TLR4, 
TNFA

+ Obesity-related inflammation 
and insulin resistance

[138]

High fat and high sugar DRD2 – Obesity [139]
High fat and high sugar NPY + Obesity [140]
High fat and high sugar POMC – Obesity [140]
High carbohydrate FGF21 + NAFLD [141]
Low folate and choline Genes involved in 

cellular proliferation
+ Liver cancer [142]

Western diet plus vitamin D 
deficiency

TLR2, TLR4, TLR9, IL1B, 
IL4, IL6, RETN

+ NAFLD [143]

Choline and folate deficiency APOE, FOXA1, FOXA2 – NAFLD [144]

SFA, saturated fatty acids; TNFA, tumor necrosis factor alpha; IL6, interleukin-6; PPARGC1A, peroxisome 
proliferative activated receptor, gamma, coactivator 1 alpha; ADGRE1, adhesion G protein-coupled receptor E1; 
LEPR, leptin receptor; NPY, neuropeptide Y; TH, tyrosine hydroxylase; DRD4, dopamine receptor D4; OPRM1, opioid 
receptor, mu 1; PENK, preproenkephalin; DAT, dopamine transporter; OPN, osteopontin; NFKB1, nuclear factor 
kappa B subunit 1; TLR2, toll-like receptor 2; TLR4, toll-like receptor 4; DRD2, dopamine receptor D2; POMC, 
proopiomelanocortin; LEP, leptin; SREBF1, sterol regulatory element binding transcription factor 1; PLIN, perilipin; 
FGF21, fibroblast growth factor 21; CYP7A1, cytochrome P450 family 7 subfamily A member 1; NR1H3, nuclear 
receptor subfamily 1 group H member 3; HSD11B1, hydroxysteroid 11-beta dehydrogenase 1; PCK1, phos-
phoenolpyruvate carboxykinase 1; TLR9, toll-like receptor 9; IL1B, interleukin-1 beta; IL4, interleukin-4; RETN, 
resistin; APOE, apolipoprotein E; FOXA1, forkhead box A1; FOXA2, forkhead box A2; PPARA, peroxisome proliferator 
activated receptor alpha; LDLR, low-density lipoprotein receptor; NFKBIA, NFKB inhibitor alpha; GATA4, GATA 
binding protein 4; ICAM1, intercellular adhesion molecule 1; VHL, von Hippel-Lindau; CVD, cardiovascular disease; 
T2DM, type 2 diabetes mellitus; NAFLD, nonalcoholic fatty liver disease.
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consumption was associated with gene networks linked to cancer in colon tissue  [46] . High-fat 
diets, especially rich in saturated fatty acids, have induced gene expression profiles related to 
inflammation, glucose intolerance, and liver lipid accumulation, as well as upregulation of 
neuropeptide expression involved in obesity development ( Table 3 ). On the other hand, low-
protein diets enhanced hepatic gluconeogenic gene expression with subsequent glucose 
intolerance  [47] . Also, choline- and folate-deficient diets were associated with dysregulation 
of genes involved in lipid metabolism, thus influencing the susceptibility and severity of 
NAFLD  [48] . Chromium deficiency downregulated insulin signaling genes, thus demon-
strating a role in T2DM pathogenesis  [49] , whereas deprivations of selenium  [50] , vitamin 
B 12   [51] , and vitamin A  [52] , could increase CVD susceptibility by upregulating proinflam-
matory and lipogenic genes.

  Experimental studies have shown the beneficial effects of nutrients and bioactive food 
compounds as a result of the regulation of critical gene expressions ( Table 4 ). In this sense, it 
has been reported that consuming a Mediterranean diet reduces the postprandial expression 
of genes that encode proteins related to inflammation, endoplasmic reticulum stress, athero-
genesis, and oxidative stress  [53–55] . Also, high intakes of monounsaturated fatty acids 
through the consumption of olive oil have been associated with a low expression of genes 
involved in inflammation and abnormal lipid storage  [55, 56] . Diets with a high content of 
polyunsaturated fatty acids favorably regulate the expression of neuropeptide genes involved 
in energy homeostasis  [57] . Moreover, energy-restricted diets supplemented with eicosapen-
taenoic acid, and α-lipoic acid have been associated with upregulation of fatty acid-oxidizing 
genes, as well as downregulation of lipogenic and proinflammatory genes  [58, 59] . In contrast, 
high-protein diets prevent and reverse NAFLD by modulating the expression of genes involved 
in liver lipid metabolism  [60, 61] . Concerning the effects of bioactive food compounds on gene 
expression, those most widely studied include green tea, theaflavin (black tea), sulforaphane 
(cruciferous vegetables), resveratrol (grapes and red wine), curcumin (turmeric), genistein 
(soy bean), and several apple polyphenols ( Table 4 ). Thus, epigallocatechin-3-gallate, thea-
flavin, curcumin, sulforaphane, and genistein may exert anticancer properties by upregu-
lating tumor suppressor genes and conversely, downregulating tumor promoting genes 
( Table 4 ). In addition, curcumin and resveratrol have shown antiatherogenic effects by 
decreasing the expression of matrix metalloproteinases, which are involved in plaque 
formation and progression  [62–64] . Of note, apple polyphenols apparently prevented diet-
induced obesity through the regulation of genes involved in adipogenesis, lipolysis, and fatty 
acid oxidation  [65] .

  Interestingly, gene expression profiles have also been used to predict the responsiveness 
to nutritional treatments. In this area, it has been reported that, prior to the consumption of 
a low-fat diet, adipose gene expression profiling was able to differentiate responders from 
nonresponders, as well as serve as a weak predictor of subjects predisposed to lose weight 
 [66] . Also, the analysis of gene expression in subcutaneous adipose tissue revealed that genes 
regulating fatty acid metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis 
were differentially regulated during a low-calorie diet between weight maintainers and 
weight regainers after weight loss  [67] . Moreover, expression levels of proinflammatory 
genes were higher at the end of a low-calorie diet in subjects who after dietary-induced 
weight loss subsequently regained weight  [68] . Differentially expressed genes in adipose 
tissue were also observed between successful and unsuccessful subjects after an energy 
restriction-induced weight loss program  [69] . In this study, pathway analyses revealed that 
the main biological processes represented in adipose tissue from subjects who regained 
weight included cellular growth and proliferation, cell death, cellular function, and mainte-
nance, whereas mitochondrial oxidative phosphorylation was the major network associated 
with continued weight loss  [69] .
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  Diet and Epigenetic Signatures 

 Epigenetics has been defined as “inheritable and reversible processes that regulate gene 
expression without concomitant changes in the DNA coding sequence”  [70] . The epigenetic 
control of gene expression is involved in critical biological and physiological processes, such 
as imprinting, silencing of specific chromosomal domains, embryonic development, cellular 
differentiation, and organogenesis  [71] . However, dysregulation of epigenetic phenomena 

 Table 4. Certain nutrigenomic studies assessing gene expression profiles associated with nutritional in-
terventions

Nutritional interventions Target genes Expression 
changes

Potential health 
effects

Ref.

Mediterranean diet NFKB1, IKBKB, MMP9, IL1B, 
MAPK8, XBP1

– Anti-inflammatory, 
antiatherogenic

[53]

Mediterranean diet plus olive 
oil

NFKB1, MMP9, TNFA – Anti-inflammatory, 
antiatherogenic

[55]

Mediterranean diet NFE2L2, SOD1, SOD2, TXNRD1 – Anti-inflammatory, 
antioxidant

[54]

High MUFA APOBR – Antilipidemic, 
antiatherogenic

[56]

Energy-restricted diet plus EPA IL10 + Anti-inflammatory [58]
High PUFA POMC, GALP + Antiobesity [57]
High PUFA HCRT, MCH – Antiobesity [57]
Energy-restricted diet plus EPA 
and α-lipoic acid

Lipid catabolism genes + Antilipidemic [59]

Energy-restricted diet plus EPA 
and α-lipoic acid

Lipid storage genes – Anti-lipidemic [59]

High protein PPARGC1A, PCK1, GSTA, CPT1A + Antisteatotic [60, 61]
High protein FGF21, SCD1 – Antisteatotic [60, 61]
Curcumin MMP-9, MMP-13, EMMPRIN – Antiatherogenic, 

anticancer
[62, 63]

Resveratrol EMMPRIN – Antiatherogenic [64]
Apple polyphenols LEP, SREBF1, PLIN – Antiobesity [65]
Apple polyphenols PPARGC1A, AQP7, AEBP1 + Antiobesity [65]
Flavonoid-fish oil supplement Phagocytosis-related 

inflammatory genes
– Anti-inflammatory [145]

High n-3/n-6 PUFA ratio TLR4, TNFA, IL6, CRP – Anti-inflammatory, 
antidiabetic

[146]

EGCG MMP9, MMP2 – Antitumorigenic [147, 148]
Theaflavin MMP2 – Antitumorigenic [149]
Resveratrol FASN – Antisteatotic [150]
Sulforaphane EGR1 + Anticancer [151]
Genistein P21, P16 + Anticancer [152]
Genistein BMI1, c-MYC – Anticancer [152]

MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; NFKB1, nuclear factor kappa B subunit 
1; IKBKB, inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta; MMP9, matrix metallopeptidase 
9; IL1B, interleukin 1 beta; MAPK8 (JNK1), mitogen-activated protein kinase 8; XBP1, X-box binding protein 1; TNFA, 
tumor necrosis factor alpha; APOBR, apolipoprotein B receptor; NFE2L2, nuclear factor, erythroid 2 like 2; SOD1, 
superoxide dismutase 1; SOD2, superoxide dismutase 2; TXNRD1, thioredoxin reductase 1; IL10, interleukin 10; 
POMC,  proopiomelanocortin; GALP, galanin like peptide; HCRT, hypocretin neuropeptide precursor; MCH, melanin-
concentrating hormone; PPARGC1A, peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PCK1, 
phosphoenolpyruvate carboxykinase 1; GSTA, glutathione S-transferase cluster; CPT1A, carnitine palmitoyltransferase 
1A; FGF21, fibroblast growth factor 21; SCD1, stearoyl-coenzyme A desaturase 1; TLR4, toll-like receptor 4; IL6, 
interleukin 6; CRP, C-reactive protein; MMP2, matrix metallopeptidase 2; MMP13, matrix metallopeptidase 13; 
EMMPRIN, extracellular matrix metalloproteinase inducer; FASN, fatty acid synthase; EGR1, early growth response 
1; LEP, leptin; SREBF1, sterol regulatory element binding transcription factor 1; PLIN, perilipin; AQP7, aquaporin 7; 
AEBP1, adipocyte enhancer binding protein 1.
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can alter phenotype and cell function, leading to the onset and progression of diverse chronic 
diseases  [72, 73] . In this sense, complex interactions among nutritional factors and DNA 
methylation, covalent histone modifications and noncoding RNAs, including microRNAs 
(miRNAs), have been implicated in obesity, dyslipidemia, T2DM, NAFLD, cancer, and CVD 
( Table 5 ). For example, high-fat and sugar diets have been related to abnormal methylation 
patterns of neuropeptide genes controlling food intake, which may contribute to the devel-
opment of obesity  [65, 74] . Low-protein diets induced glucose  [47]  and lipid alterations by 
disrupting histone modifications in key regulatory genes  [75] . Also, choline and folate 
shortages enhanced miRNAs changes responsible for the progression of NAFLD  [76, 77] . 
Different micronutrient deficiencies such as folate, vitamin A, vitamin B, potassium, iron, and 
selenium correlated with hypermethylation of tumor suppressor genes, demonstrating a role 
in cancer  [78, 79] . Deprivations of vitamin D  [80] , calcium  [81] , magnesium  [82] , and chromium 
 [49]  could increase the risk of developing T2DM through promoting aberrant methylation 
patterns in genes involved in glucose homeostasis, insulin signaling and inflammatory 
response. Additionally, deficits of selenium  [50]  and vitamin A were associated with the 
pathogenesis of CVD by affecting the DNA methylation status of critical genes  [52] . 

 Table 5. Nutriepigenetic examples of interactions between dietary intakes and epigenetic modifications in-
volved in disease risk

Dietary factors Epigenetic signatures Modification 
types

Putative 
disease risks

Ref.

Low protein NR1H3 acetylation – T2DM [47]
Chromium deficiency Methylation of insulin signaling genes + T2DM [49]
Selenium deficiency TLR2, ICAM1 methylation – CVD [50]
Vitamin B12 deficiency SREBF1, LDLR methylation – Dyslipidemia [51]
Vitamin A deficiency GATA4 methylation + CVD [52]
High fat and high sugar LEP methylation + Obesity [65]
High fat OPRM1, PENK, and DAT methylation – Obesity [74]
Low protein CYP7A1 acetylation – Dyslipidemia [75]
Choline and folate 
deficiencies

miR-134, miR-409-3p, miR-410 and 
miR-495 expressions

+ NAFLD [76]

Choline and folate 
deficiencies

miR-34a, miR-122, miR-181a, miR-192, 
and miR-200b expressions

+ NAFLD [77]

Low folate, vitamin A, 
vitamin B1, potassium, iron

P16, P14, and hMLH1 methylation + Cancer [78]

Selenium deficiency VHL methylation + Cancer [79]
Vitamin D deficiency NFKBIA methylation + T2DM [80]
Calcium deficiency HSD11B1 methylation – T2DM [81]
Magnesium deficiency HSD11B2 methylation + T2DM [82]
High fat and high sugar FASN methylation – Obesity, NAFLD [88]
Choline and folate 
deficiencies

APOE, FOXA1, and FOXA2 methylation + NAFLD [144]

High fat and high sugar FASN methylation – Obesity, NAFLD [153]
Low fruit consumption and 
folate deficiency

LINE-1 methylation – Cancer [154]

LEP, leptin; FASN, fatty acid synthase; OPRM1, opioid receptor, mu 1; PENK, preproenkephalin; DAT, dopamine 
transporter; CYP7A1, cytochrome P450 family 7 subfamily A member 1; NR1H3, nuclear receptor subfamily 1 group 
H member 3; LINE-1, long interspersed element-1; MLH1 (HMLH1), mutL homolog 1; APOE, apolipoprotein E; 
FOXA1, forkhead box A1; FOXA2, forkhead box A2; SREBF1, sterol regulatory element binding transcription factor 
1; LDLR, low-density lipoprotein receptor; NFKBIA, NFKB inhibitor alpha; GATA4, GATA binding protein 4; TLR2, 
toll-like receptor 2; ICAM1, intercellular adhesion molecule 1; VHL, von Hippel-Lindau; HSD11B1, hydroxysteroid 
11-beta dehydrogenase 1; HSD11B2, hydroxysteroid 11-beta dehydrogenase 2; CVD, cardiovascular disease; T2DM, 
type 2 diabetes mellitus; NAFLD, nonalcoholic fatty liver disease.



53J Nutrigenet Nutrigenomics 2017;10:43–62

 DOI: 10.1159/000477729 

 Ramos-Lopez et al.: Precision Nutrition in Chronic Diseases 

www.karger.com/jnn
© 2017 S. Karger AG, Basel

  On the other hand, the reversible feature of epigenetic marks has given rise to the design 
of specific nutritional interventions aimed at reversing epigenetic alterations that might have 
a significant impact on preventing and treating human chronic diseases (nutriepigenetics) 
 [83] . Thus, several experimental studies have investigated the epigenetic mechanisms under-
lying the health effects of certain nutrients and bioactive food components ( Table 6 ). For 
instance, it was found that the anti-inflammatory effects of consuming a Mediterranean diet 

 Table 6. Certain nutriepigenetic studies evaluating epigenetic modifications related to diverse nutritional in-
terventions

Nutritional interventions Epigenetic signatures Modification 
types

Potential health 
effects

Ref.

Apple polyphenols SREBF1 methylation – Antiobesity [65]
Apple polyphenols PPARGC1A methylation + Antiobesity [65]
Mediterranean diet EEF2, IL4I1 methylation – Anti-inflammatory [84]
Mediterranean diet MAPKAPK2 methylation + Anti-inflammatory [84]
Mediterranean diet IL6 methylation + Anti-inflammatory [85]
Fish oil and pectin miR-19b, miR-26b, miR-203 

expressions
+ Anticancer [86]

DHA miR-192, miR-30c 
expressions

+ Antilipidemic [87]

Pterostilbene FASN methylation + Antiobesity [88]
Curcumin p300 HAT activity – CVD prevention [89]
Curcumin FGFR3, FZD10, GPX4, HOXD3 

methylation
– Antifibrotic [90]

Resveratrol miR-129, miR-328-5p, 
miR-539-5p

Antilipidemic [149]

Genistein P21, P16 chromatin 
activators

+ Anticancer [151]

Genistein P21, P16 chromatin
repressors

– Anticancer [151]

Methyl donor 
supplementation

FASN methylation + Antisteatotic [155]

Extra-virgin olive oil CNR1 (CB1) methylation – Anticancer [156]
PUFA Global DNA methylation + Anticancer [157]
Resveratrol BRCA-1 methylation – Anticancer [158]
Resveratrol miR-101b, miR-455 

expressions
+ Anti-inflammatory, 

anticancer
[159]

Resveratrol Sirt1 activation + Anti-inflammatory, 
anticancer

[160, 161]

EGCG RXRA methylation – Anticancer [162]
EGCG miR-16 expression + Anticancer [163]
Green tea polyphenols 
and EGCG

EZH2, class I HDAC activity – Anticancer [164]

Green tea polyphenols 
and EGCG

P53 acetylation + Anticancer [165]

Curcumin miR-22 expression + Anticancer [166]
Sulforaphane HDAC activity – Anticancer [167, 168]
Sulforaphane P21 acetylation + Anticancer [168]
Genistein P21, P16 acetylation + Anticancer [169]

DHA, docosahexaenoic acid; PUFA, polyunsaturated fatty acid; EGCG, epigallocatechin-3-gallate; EEF2, eu-
karyotic translation elongation factor 2; IL4I1, interleukin-4 induced 1; MAPKAPK2, mitogen-activated protein 
kinase-activated protein kinase 2; IL6, interleukin-6; CNR1 (CB1), cannabinoid receptor 1; BRCA1, DNA repair 
associated; sirt1, sirtuin 1; FASN, fatty acid synthase; RXRA, retinoid X receptor alpha; EZH2, enhancer of zeste 
homolog 2; FGFR3, fibroblast growth factor receptor 3; FZD10, frizzled class receptor 10; GPX4, glutathione 
peroxidase 4; HOXD3, homeobox D3; HATs, acetyltransferases; HDACs, histone deacetylases; H3, histone 3; ERS1, 
estrogen receptor 1 (alpha); SREBF1, sterol regulatory element binding transcription factor 1; PPARGC1A, peroxi-
some proliferative activated receptor, gamma, coactivator 1 alpha.
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were related to hypermethylation of proinflammatory genes  [84, 85] . The administrations of 
polyunsaturated fatty acids positively modulated the expression of several miRNAs, which 
suppressed oncogenic and lipogenic genes  [86, 87] . Also, the anticancer properties of res-
veratrol, epigallocatechin-3-gallate, curcumin, sulforaphane, and genistein have been asso-
ciated with some epigenetic modifications including hypomethylation and acetylation of tumor 
suppressor genes, and an increase in miRNAs targeting oncogenes ( Table 6 ). Likewise, apple 
polyphenols and pterostilbene (a derivate of resveratrol), prevented diet-induced obesity by 
regulating the methylation status of genes involved in lipid metabolism  [65, 88] . Furthermore, 
it was reported that curcumin exerted protective effects against liver injury and heart failure 
through modulating DNA methylation patterns and histone modifications of key genes  [89, 90] . 
Based on this evidence, it has been proposed that the introduction of these dietary compounds 
into an “epigenetic diet” could serve as an effective strategy for reducing the incidence of obesity 
and associated comorbidities  [91] . Additionally, studies have shown that some of the health 
benefits of energy restriction are mediated partially by epigenetic mechanisms including 
prevention of aberrant DNA methylation patterns and chromatin alterations  [92] . Thus, it has 
been reported that moderate energy reductions might contribute to delay the onset of some 
aging-related diseases and extend lifespan through epigenetic mechanisms  [93] .

  Of note, epigenetic marks have also been found to modulate the effect of nutritional treat-
ments on weight loss and changes in metabolic profiles, which could be used as biomarkers 
to predict the responsiveness to dietary prescriptions  [94] . For example, methylation levels 
of circadian genes correlated with the magnitude of weight loss and circulating blood lipids 
after a nutritional program based on a Mediterranean dietary pattern  [95, 96] . Similarly, 
methylation patterns of appetite-regulatory genes were associated with the success in weight 
loss or the risk of weight regain  [97, 98] . Moreover, reductions of body fat and serum lipids 
were related to changes in the methylation status of genes involved in inflammatory response 
and fatty acid metabolism  [99, 100] . Furthermore, differential baseline expression of several 
miRNAs was found between responders and nonresponders to a weight-loss trial that con-
sisted of following an energy-restricted treatment  [101] .

  As a final point, it is important to highlight that there may be interactions between the 
different genetic/epigenetic approaches, which may modulate the effectiveness of precision 
nutrition on the treatment of some chronic diseases. For example, in vitro studies demon-
strated that the effects of omega-3 fatty acids supplementation on plasma triglyceride clearance 
through increasing transcription rates of lipoprotein lipase  (LPL)  gene, were dependent on the 
L162V polymorphism in the peroxisome proliferator-activated receptor alpha ( PPARA ) gene 
 [102] . Another study reported that gene expression levels of  PPARA  and apolipoprotein A1 
( APOA1 ) were influenced by the  PPARA  L162V polymorphism after the supplementation of 
omega-3 fatty acids  [103] . Furthermore, it was found that changes in plasma triglycerides in 
response to omega-3 fatty acid supplementation could be modulated by the effect of polymor-
phisms and DNA methylation on expression levels of key genes identified by genome-wide 
association studies  [104] . Additionally, genetic variants in genes encoding the selenoproteins 
glutathione peroxidase ( GPX1 ) and selenoprotein P ( SEPP ) could influence their gene expres-
sions in response to supplementation with a selenium-rich Brazil nut, suggesting a possible 
role in the nutritional treatment of chronic degenerative conditions  [105] .

  Concluding Remarks 

 The adverse impacts of metabolic diseases including obesity and associated chronic 
comorbidities on public health remain a major concern due to the lack of effective interven-
tions for their prevention and management. The absence of relevant progress despite 
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persistent efforts may be partially explained by the fact that current strategies are based on 
nutritional recommendations for general populations, and do not consider the influence of 
genetic/epigenetic factors and their interaction with the environment (mainly diet and 
physical activity). Precision nutrition is an important part of personalized medicine and an 
emerging approach for disease prevention and treatment that takes into account genetic/
epigenetic information, as well as age, gender, physiopathological status and environmental 
issues, including personal lifestyle. In recent years, genomic sciences have been contributing 
to a better understanding of how genetic variants and epigenetic modifications are involved 
in the development of diverse pathological conditions and the way in which they may modify 
responses to therapy. This knowledge has led to the search for genetic and epigenetic 
biomarkers to predict the risk of developing chronic diseases. Another potential therapeutic 
target is the use of nutritional interventions based on certain nutrients and bioactive dietary 
compounds that can modify epigenetic marks and gene expression. Although caution must be 
exercised, these scientific insights are paving the way for the design of innovative strategies 
for the prevention, management, and treatment of obesity and other prevalent chronic 
diseases with a genetic background within the era of precision nutrition.
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