3,839 research outputs found
Recommended from our members
Solid Freeform Fabrication of Functional Silicon Nitride Ceramics by Laminated Object Manufacturing 1
The processing of silicon nitride (Si3N4) structural ceramics by Laminated Object
Manufacturing (LOM) using ceramic tape preforms was investigated. The key processing stages
involved green shape formation (which used the LOM process), followed by the burnout of all
organics, and final densification by pressureless sintering. Two material systems were
considered. These were a) monolithic Si3N4 and b) a preceramic polymer infiltrated Si3N4. The
raw materials for the process were tape preforms of Si3N4, which were fabricated by standard
tape casting techniques.
Mechanical property data obtained for the LOM processed Si3N4 showed high strength and
fracture toughness values. The room temperature and high temperature (1260 o
C) flexural
strengths were in the range of 700-900 MPa and 360-400 MPa, respectively. The fracture
toughness averaged from 5.5-7.5 MPa.m1/2. These strength and fracture toughness values are
comparable to those reported for conventionally prepared Si3N4 ceramics. Thus, this research
demonstrated that the LOM technique is a viable method for preparing functional Si3N4 ceramics
with good physical and mechanical properties.Mechanical Engineerin
Recommended from our members
An Evaluation of the Mechanical Behavior of Bronze-NI Composites Produced by Selective Laser Sintering
Mechanical properties of Bronze-Nickel composites produced by Selective Laser Sintering (SLS)
were evaluated by constant displacement tension tests. These were studied as a function of SLS
process parameters - laser power density, scan speed, scan spacing, scan direction and layer
thickness. The strength data was then correlated to the microstructure and the part bulk density. To
further enhance the part densities and the mechanical properties, post-SLS sintering was studied.
The relationships between SLS process parameters, post-SLS sintering parameters and the
resulting microstructures, part bulk density and the mechanical properties will be described.Mechanical Engineerin
Carbon steel wettability characteristics enhancement for improved enamelling using a 1.2 kW high power diode laser
High-power diode laser (HPDL) surface treatment of a common engineering carbon steel(EN8) was found to effect significant changes to the wettability characteristics of the metal. These modifications have been investigated in terms of the changes in the surface roughness of the steel, the presence of any surface melting, the polar component of the steel surface energy and the relative surface oxygen content of the steel. The morphological and wetting characteristics
of the mild steel and the enamel were determined using optical microscopy, scanning
electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), energy-dispersive X-ray
(EDX) analysis and wetting experiments by the sessile drop technique. This work has shown
that HPDL radiation can be used to alter the wetting characteristics of carbon steel so as to
facilitate improved enamelling
Assessing the relationship between human well-being and ecosystem services: a review of frameworks
Focusing on the most impoverished populations, we critically review and synthesise key themes from dominant frameworks for assessing the relationship between well-being and ecosystem services in developing countries. This requires a differentiated approach to conceptualising well-being that appropriately reflects the perspectives of the poorest-those most directly dependent on ecosystem services, and their vulnerability to external and policy-driven environmental change. The frameworks analysed draw upon environmental sciences, economics, psychology, sociology, and anthropology, and were selected on the basis of their demonstrated or potential ability to illustrate the relationship between environmental change and human well-being, as well as their prevalence in real world applications. Thus, the synthesis offered here is informed by the various theoretical, methodological, and hermeneutical contributions from each field to the notion of well-being. The review highlights several key dimensions that should be considered by those interested in understanding and assessing the impact of environmental change on the well-being of the world's poorest people: the importance of interdisciplinary consideration of well-being, the need for frameworks that integrate subjective and objective aspects of well-being, and the central importance of context and relational aspects of well-being. The review is of particular interest to those engaged in the post-2015 development agenda
Level Density of a Bose Gas and Extreme Value Statistics
We establish a connection between the level density of a gas of
non-interacting bosons and the theory of extreme value statistics. Depending on
the exponent that characterizes the growth of the underlying single-particle
spectrum, we show that at a given excitation energy the limiting distribution
function for the number of excited particles follows the three universal
distribution laws of extreme value statistics, namely Gumbel, Weibull and
Fr\'echet. Implications of this result, as well as general properties of the
level density at different energies, are discussed.Comment: 4 pages, no figure
The enamelling of concrete for improved performance characteristics by means of high power diode laser interaction
The contemporary 120 W high power diode laser (HPDL) has been successfully used for the first time to fire an enamel glaze onto the ordinary Portland cement (OPC) surface of concrete. The enamel glazes were generated with laser power densities as low as 1 kW/cm2 and at speeds of up to 780 mm/min, yielding a possible maximum coverage rate of 0.34 m2/h. The enamel glazes were typically 750 m in thickness and displayed no discernible microcracks or porosities. Owing to the wettability characteristics of the OPC, it proved necessary to laser treat the OPC surface prior to firing the enamel. Mechanical testing of the HPDL fired enamel glazes revealed that the average rupture strength was 2.8 J, whilst the rupture strength of the untreated OPC surface was some 4.3 J. The average bond strength of the glaze was recorded as 2.4 MPa as opposed to 6.3 MPa for the untreated OPC. The HPDL fired enamel glazes exhibited exceptional wear and corrosion resistance, wearing by only 3.3 mg/cm2 after 8 h and showing no discernible morphological or microstructural changes when exposed to acid, alkali and detergent. In contrast, the untreated OPC surface was attacked almost immediately by the reagents used and was worn by 78 mg/cm2 after 8 h. In addition, the HPDL fired enamel glaze afforded the concrete bulk complete resistance to water absorption. The findings of life assessment testing revealed that the HPDL fired enamel glaze effected an increase in the wear life of the concrete by 4.5 to 52.7 times over an untreated OPC surface, depending on the corrosive environment
Study of MicroPattern Gaseous detectors with novel nanodiamond based photocathodes for single photon detection in EIC RICH
Identification of high momentum hadrons at the future EIC is crucial, gaseous
RICH detectors are therefore viable option. Compact collider setups impose to
construct RICHes with small radiator length, hence significantly limiting the
number of detected photons. More photons can be detected in the far UV region,
using a windowless RICH approach. QE of CsI degrades under strong irradiation
and air contamination. Nanodiamond based photocathodes (PCs) are being
developed as an alternative to CsI. Recent development of layers of
hydrogenated nanodiamond powders as an alternative photosensitive material and
their performance, when coupled to the THick Gaseous Electron Multipliers
(THGEM)-based detectors, are the objects of an ongoing R\&D. We report about
the initial phase of our studies.Comment: 3 pages, 5 figures, RICH2018 conference proceedin
Resistivity due to a Domain Wall in Ferromagnetic Metal
The resistivity due to a domain wall in ferromagnetic metallic wire is
calculated based on the linear response theory. The interaction between
conduction electrons and the wall is expressed in terms of a classical gauge
field which is introduced by the local gauge transformation in the electron
spin space. It is shown that the wall contributes to the decoherence of
electrons and that this quantum correction can dominate over the Boltzmann
resisitivity, leading to a decrease of resisitivity by nucleation of a wall.
The conductance fluctuation due to the motion of the wall is also investigated.
The results are compared with recent experiments.Comment: 9 pages, 3 figure
- …
