17,785 research outputs found

    Mesoscopic Superposition of States with Sub-Planck Structures in Phase Space

    Get PDF
    We propose a method using the dispersive interaction between atoms and a high quality cavity to realize the mesoscopic superposition of coherent states which would exhibit sub-Planck structures in phase space. In particular we focus on a superposition involving four coherent states. We show interesting interferences in the conditional measurements involving two atoms.Comment: 4-page 3-figur

    Exactly solvable PT\mathcal{PT}-symmetric models in two dimensions

    Get PDF
    Non-hermitian, PT\mathcal{PT}-symmetric Hamiltonians, experimentally realized in optical systems, accurately model the properties of open, bosonic systems with balanced, spatially separated gain and loss. We present a family of exactly solvable, two-dimensional, PT\mathcal{PT} potentials for a non-relativistic particle confined in a circular geometry. We show that the PT\mathcal{PT} symmetry threshold can be tuned by introducing a second gain-loss potential or its hermitian counterpart. Our results explicitly demonstrate that PT\mathcal{PT} breaking in two dimensions has a rich phase diagram, with multiple re-entrant PT\mathcal{PT} symmetric phases.Comment: 6 pages, 6 figure

    Cosmic acceleration from coupling of baryonic and dark matter components: Analysis and diagnostics

    Full text link
    In this paper, we examine a scenario in which late-time cosmic acceleration might arise due to the coupling between baryonic matter and dark matter without the presence of extra degrees of freedom. In this case, one can obtain late-time acceleration in Jordan frame and not in Einstein frame. We consider two different forms of parametrization of the coupling function, and put constraints on the model parameters by using an integrated datasets of Hubble parameter, Type Ia supernova and baryon acoustic oscillations. The models under consideration are consistent with the observations. In addition, we perform the statefinder and OmOm diagnostics, and show that the models exhibit a distinctive behavior due to the phantom characteristic in future which is a generic feature of the underlying scenario.Comment: 15 pages, 5 figure

    Quantum random walk of two photons in separable and entangled state

    Full text link
    We discuss quantum random walk of two photons using linear optical elements. We analyze the quantum random walk using photons in a variety of quantum states including entangled states. We find that for photons initially in separable Fock states, the final state is entangled. For polarization entangled photons produced by type II downconverter, we calculate the joint probability of detecting two photons at a given site. We show the remarkable dependence of the two photon detection probability on the quantum nature of the state. In order to understand the quantum random walk, we present exact analytical results for small number of steps like five. We present in details numerical results for a number of cases and supplement the numerical results with asymptotic analytical results

    Off Resonant Pumping for Transition from Continuous to Discrete Spectrum and Quantum Revivals in Systems in Coherent States

    Get PDF
    We show that in parametrically driven systems and, more generally, in systems in coherent states, off-resonant pumping can cause a transition from a continuum energy spectrum of the system to a discrete one, and result in quantum revivals of the initial state. The mechanism responsible for quantum revivals in the present case is different from that in the non-linear wavepacket dynamics of systems such as Rydberg atoms. We interpret the reported phenomena as an optical analog of Bloch oscillations realized in Fock space and propose a feasible scheme for inducing Bloch oscillations in trapped ions.Comment: 5 pages, 4 figures, submitted to Jnl. of Optics
    corecore