19,005 research outputs found

    Optimized pulse sequences for suppressing unwanted transitions in quantum systems

    Full text link
    We investigate the nature of the pulse sequence so that unwanted transitions in quantum systems can be inhibited optimally. For this purpose we show that the sequence of pulses proposed by Uhrig [Phys. Rev. Lett. \textbf{98}, 100504 (2007)] in the context of inhibition of environmental dephasing effects is optimal. We derive exact results for inhibiting the transitions and confirm the results numerically. We posit a very significant improvement by usage of the Uhrig sequence over an equidistant sequence in decoupling a quantum system from unwanted transitions. The physics of inhibition is the destructive interference between transition amplitudes before and after each pulse.Comment: 5 figure

    Aspects of Integrability in N =4 SYM

    Full text link
    Various recently developed connections between supersymmetric Yang-Mills theories in four dimensions and two dimensional integrable systems serve as crucial ingredients in improving our understanding of the AdS/CFT correspondence. In this review, we highlight some connections between superconformal four dimensional Yang-Mills theory and various integrable systems. In particular, we focus on the role of Yangian symmetries in studying the gauge theory dual of closed string excitations. We also briefly review how the gauge theory connects to Calogero models and open quantum spin chains through the study of the gauge theory duals of D3 branes and open strings ending on them. This invited review, written for Modern Physics Letters-A, is based on a seminar given at the Institute of Advanced Study, Princeton.Comment: Invited brief review for Mod. Phys. Lett. A based on a talk at I.A.S, Princeto

    Generating Preview Tables for Entity Graphs

    Full text link
    Users are tapping into massive, heterogeneous entity graphs for many applications. It is challenging to select entity graphs for a particular need, given abundant datasets from many sources and the oftentimes scarce information for them. We propose methods to produce preview tables for compact presentation of important entity types and relationships in entity graphs. The preview tables assist users in attaining a quick and rough preview of the data. They can be shown in a limited display space for a user to browse and explore, before she decides to spend time and resources to fetch and investigate the complete dataset. We formulate several optimization problems that look for previews with the highest scores according to intuitive goodness measures, under various constraints on preview size and distance between preview tables. The optimization problem under distance constraint is NP-hard. We design a dynamic-programming algorithm and an Apriori-style algorithm for finding optimal previews. Results from experiments, comparison with related work and user studies demonstrated the scoring measures' accuracy and the discovery algorithms' efficiency.Comment: This is the camera-ready version of a SIGMOD16 paper. There might be tiny differences in layout, spacing and linebreaking, compared with the version in the SIGMOD16 proceedings, since we must submit TeX files and use arXiv to compile the file

    On the expected diameter, width, and complexity of a stochastic convex-hull

    Full text link
    We investigate several computational problems related to the stochastic convex hull (SCH). Given a stochastic dataset consisting of nn points in Rd\mathbb{R}^d each of which has an existence probability, a SCH refers to the convex hull of a realization of the dataset, i.e., a random sample including each point with its existence probability. We are interested in computing certain expected statistics of a SCH, including diameter, width, and combinatorial complexity. For diameter, we establish the first deterministic 1.633-approximation algorithm with a time complexity polynomial in both nn and dd. For width, two approximation algorithms are provided: a deterministic O(1)O(1)-approximation running in O(nd+1logn)O(n^{d+1} \log n) time, and a fully polynomial-time randomized approximation scheme (FPRAS). For combinatorial complexity, we propose an exact O(nd)O(n^d)-time algorithm. Our solutions exploit many geometric insights in Euclidean space, some of which might be of independent interest

    Mass-Gaps and Spin Chains for (Super) Membranes

    Get PDF
    We present a method for computing the non-perturbative mass-gap in the theory of Bosonic membranes in flat background spacetimes with or without background fluxes. The computation of mass-gaps is carried out using a matrix regularization of the membrane Hamiltonians. The mass gap is shown to be naturally organized as an expansion in a 'hidden' parameter, which turns out to be 1d\frac{1}{d}: d being the related to the dimensionality of the background space. We then proceed to develop a large NN perturbation theory for the membrane/matrix-model Hamiltonians around the quantum/mass corrected effective potential. The same parameter that controls the perturbation theory for the mass gap is also shown to control the Hamiltonian perturbation theory around the effective potential. The large NN perturbation theory is then translated into the language of quantum spin chains and the one loop spectra of various Bosonic matrix models are computed by applying the Bethe ansatz to the one-loop effective Hamiltonians for membranes in flat space times. Apart from membranes in flat spacetimes, the recently proposed matrix models (hep-th/0607005) for non-critical membranes in plane wave type spacetimes are also analyzed within the paradigm of quantum spin chains and the Bosonic sectors of all the models proposed in (hep-th/0607005) are diagonalized at the one-loop level.Comment: 36 Page

    Off Resonant Pumping for Transition from Continuous to Discrete Spectrum and Quantum Revivals in Systems in Coherent States

    Get PDF
    We show that in parametrically driven systems and, more generally, in systems in coherent states, off-resonant pumping can cause a transition from a continuum energy spectrum of the system to a discrete one, and result in quantum revivals of the initial state. The mechanism responsible for quantum revivals in the present case is different from that in the non-linear wavepacket dynamics of systems such as Rydberg atoms. We interpret the reported phenomena as an optical analog of Bloch oscillations realized in Fock space and propose a feasible scheme for inducing Bloch oscillations in trapped ions.Comment: 5 pages, 4 figures, submitted to Jnl. of Optics

    Collective coherent population trapping in a thermal field

    Get PDF
    We analyzed the efficiency of coherent population trapping (CPT) in a superposition of the ground states of three-level atoms under the influence of the decoherence process induced by a broadband thermal field. We showed that in a single atom there is no perfect CPT when the atomic transitions are affected by the thermal field. The perfect CPT may occur when only one of the two atomic transitions is affected by the thermal field. In the case when both atomic transitions are affected by the thermal field, we demonstrated that regardless of the intensity of the thermal field the destructive effect on the CPT can be circumvented by the collective behavior of the atoms. An analytic expression was obtained for the populations of the upper atomic levels which can be considered as a measure of the level of thermal decoherence. The results show that the collective interaction between the atoms can significantly enhance the population trapping in that the population of the upper state decreases with increased number of atoms. The physical origin of this feature was explained by the semiclassical dressed atom model of the system. We introduced the concept of multiatom collective coherent population trapping by demonstrating the existence of collective (entangled) states whose storage capacity is larger than that of the equivalent states of independent atoms.Comment: Accepted for publication in Phys. Rev.

    Normal mode splitting in a coupled system of nanomechanical oscillator and parametric amplifier cavity

    Get PDF
    We study how an optical parametric amplifier inside the cavity can affect the normal mode splitting behavior of the coupled movable mirror and the cavity field. We work in the resolved sideband regime. The spectra exhibit a double-peak structure as the parametric gain is increased. Moreover, for a fixed parametric gain, the double-peak structure of the spectrum is more pronounced with increasing the input laser power. We give results for mode splitting. The widths of the split lines are sensitive to parametric gain.Comment: 7 pages,9 figure

    Simple Wriggling is Hard unless You Are a Fat Hippo

    Full text link
    We prove that it is NP-hard to decide whether two points in a polygonal domain with holes can be connected by a wire. This implies that finding any approximation to the shortest path for a long snake amidst polygonal obstacles is NP-hard. On the positive side, we show that snake's problem is "length-tractable": if the snake is "fat", i.e., its length/width ratio is small, the shortest path can be computed in polynomial time.Comment: A shorter version is to be presented at FUN 201
    corecore