398 research outputs found

    Identification of a non-redundant set of 202 in silico SSR markers and applicability of a select set in chickpea (Cicer arietinum L.)

    Get PDF
    The paucity of sequence information flanking the simple sequence repeat (SSR) motifs identified especially in the transcript sequences has been limiting factor in the development of SSR markers for plant genome analysis as well as breeding applications. To overcome this and enhance the genic SSR marker repertoire in chickpea, the draft genome sequence of kabuli chickpea (CDC Frontier) and publicly available transcript sequences consisting of in silico identified SSR motifs were deployed in the present study. In this direction, the 300 bp sequence flanking the SSR motifs were retrieved by aligning 566 SSR containing transcripts of ICCV 2 available in public domain on the reference chickpea genome. A set of 202 novel genic SSRs were developed from a set of 507 primer pairs designed, based on in silico amplification of single locus and having no similarity to the publicly available SSR markers. Further, 40 genic SSRs equally distributed on chickpea genome were validated on a select set of 44 chickpea genotypes (including 41 Cicer arietinum and 3 Cicer reticulatum), out of which 25 were reported to be polymorphic. The polymorphism information content (PIC) value of 25 polymorphic genic SSRs ranged from 0.11 to 0.77 and number of alleles varied from 2 to 9. Clear demarcation among founder lines of multi-parent advanced generation inter-cross (MAGIC) population developed at ICRISAT and near-isogenic nature of JG 11 and JG11 + demonstrates the usefulness of these markers in chickpea diversity analysis and breeding studies. Further, genic polymorphic SSRs reported between parental lines of 16 different mapping populations along with the novel SSRs can be deployed for trait mapping and breeding applications in chickpea

    Single Atom and Two Atom Ramsey Interferometry with Quantized Fields

    Get PDF
    Implications of field quantization on Ramsey interferometry are discussed and general conditions for the occurrence of interference are obtained. Interferences do not occur if the fields in two Ramsey zones have precise number of photons. However in this case we show how two atom (like two photon) interferometry can be used to discern a variety of interference effects as the two independent Ramsey zones get entangled by the passage of first atom. Generation of various entangled states like |0,2>+|2,0> are discussed and in far off resonance case generation of entangled state of two coherent states is discussed.Comment: 20 pages, 5 figures, revised version. submitted to Phys. Rev.

    Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states

    Get PDF
    We introduce a linear, canonical transformation of the fundamental single--mode field operators aa and a†a^{\dagger} that generalizes the linear Bogoliubov transformation familiar in the construction of the harmonic oscillator squeezed states. This generalization is obtained by adding to the linear transformation a nonlinear function of any of the fundamental quadrature operators X1X_{1} and X2X_{2}, making the original Bogoliubov transformation quadrature--dependent. Remarkably, the conditions of canonicity do not impose any constraint on the form of the nonlinear function, and lead to a set of nontrivial algebraic relations between the cc--number coefficients of the transformation. We examine in detail the structure and the properties of the new quantum states defined as eigenvectors of the transformed annihilation operator bb. These eigenvectors define a class of multiphoton squeezed states. The structure of the uncertainty products and of the quasiprobability distributions in phase space shows that besides coherence properties, these states exhibit a squeezing and a deformation (cooling) of the phase--space trajectories, both of which strongly depend on the form of the nonlinear function. The presence of the extra nonlinear term in the phase of the wave functions has also relevant consequences on photon statistics and correlation properties. The non quadratic structure of the associated Hamiltonians suggests that these states be generated in connection with multiphoton processes in media with higher nonlinearities.Comment: 16 pages, 15 figure

    From Storage and Retrieval of Pulses to Adiabatons

    Get PDF
    We investigate whether it is possible to store and retrieve the intense probe pulse from a Λ\Lambda-type homogeneous medium of cold atoms. Through numerical simulations we show that it is possible to store and retrieve the probe pulse which are not necessarily weak. As the intensity of the probe pulse increases, the retrieved pulse remains a replica of the original pulse, however there is overall broadening and loss of the intensity. These effects can be understood in terms of the dependence of absorption on the intensity of the probe. We include the dynamics of the control field, which becomes especially important as the intensity of the probe pulse increases. We use the theory of adiabatons [Grobe {\it et al.} Phys. Rev. Lett. {\bf 73}, 3183 (1994)] to understand the storage and retrieval of light pulses at moderate powers.Comment: 15 pages, 7 figures, typed in RevTe

    Coherent states for exactly solvable potentials

    Full text link
    A general algebraic procedure for constructing coherent states of a wide class of exactly solvable potentials e.g., Morse and P{\"o}schl-Teller, is given. The method, {\it a priori}, is potential independent and connects with earlier developed ones, including the oscillator based approaches for coherent states and their generalizations. This approach can be straightforwardly extended to construct more general coherent states for the quantum mechanical potential problems, like the nonlinear coherent states for the oscillators. The time evolution properties of some of these coherent states, show revival and fractional revival, as manifested in the autocorrelation functions, as well as, in the quantum carpet structures.Comment: 11 pages, 4 eps figures, uses graphicx packag

    Simulation in Information Systems: Potential of the vulnerability theory

    Get PDF
    Systems simulation has been widely used in the last decades in order to analyze the impact of different scenarios in several areas, and its application to information systems in no exception. Analyzing information systems through simulation models is simultaneously much more affordable; it is required a smaller amount of resources and it is less disruptive with the real system. Since information systems are becoming a cornerstone for our society, a failure in these systems can have a huge impact. The theory of vulnerability identifies failures in which small damage can have disproportionate impact consequences in terms of the functionality of the whole system. This paper discusses the use of the theory of vulnerability in information system simulation

    Solitons and giants in matrix models

    Get PDF
    We present a method for solving BPS equations obtained in the collective-field approach to matrix models. The method enables us to find BPS solutions and quantum excitations around these solutions in the one-matrix model, and in general for the Calogero model. These semiclassical solutions correspond to giant gravitons described by matrix models obtained in the framework of AdS/CFT correspondence. The two-field model, associated with two types of giant gravitons, is investigated. In this duality-based matrix model we find the finite form of the nn-soliton solution. The singular limit of this solution is examined and a realization of open-closed string duality is proposed.Comment: 17 pages, JHEP cls; v2: final version to appear in JHEP, 2 references added, physical motivation and interpretation clarifie

    Laser induced breakdown of the magnetic field reversal symmetry in the propagation of unpolarized light

    Get PDF
    We show how a medium, under the influece of a coherent control field which is resonant or close to resonance to an appropriate atomic transition, can lead to very strong asymmetries in the propagation of unpolarized light when the direction of the magnetic field is reversed. We show how EIT can be used to mimic effects occuring in natural systems and that EIT can produce very large asymmetries as we use electric dipole allowed transitions. Using density matrix calculations we present results for the breakdown of the magnetic field reversal symmetry for two different atomic configurations.Comment: RevTex, 6 pages, 10 figures, Two Column format, submitted to Phys. Rev.

    Slow Light in Doppler Broadened Two level Systems

    Get PDF
    We show that the propagation of light in a Doppler broadened medium can be slowed down considerably eventhough such medium exhibits very flat dispersion. The slowing down is achieved by the application of a saturating counter propagating beam that produces a hole in the inhomogeneous line shape. In atomic vapors, we calculate group indices of the order of 10^3. The calculations include all coherence effects.Comment: 6 pages, 5 figure

    A Knob for Changing Light Propagation from Subluminal to Superluminal

    Get PDF
    We show how the application of a coupling field connecting the two lower metastable states of a lambda-system can produce a variety of new results on the propagation of a weak electromagnetic pulse. In principle the light propagation can be changed from subluminal to superluminal. The negative group index results from the regions of anomalous dispersion and gain in susceptibility.Comment: 6 pages,5 figures, typed in RevTeX, accepted in Phys. Rev.
    • …
    corecore