6 research outputs found

    Modelado y simulación de la segregación de partículas no esféricas en polímeros semicristalinos

    Get PDF
    La incorporación de partículas en polímeros se utiliza ampliamente para mejorar las propiedades de estos materiales. La interacción de las partículas durante la cristalización de un polímero semicristalino con la intercara de solidificación puede segregarlas de la red cristalina y, como consecuencia, conducir a una distribución no homogénea de las mismas en la matriz. En este trabajo se investigó esta interacción debida al movimiento de la intercara de solidificación hacia una partícula inmersa en un material fundido. En esta interacción se consideran dos fuerzas principales actuantes sobre la partícula y que conducen a la segregación: la fuerza de arrastre que impulsa a las partículas hacia la interfaz y la fuerza de repulsión, que se calcula a partir de la fuerza de Lifshitz-Van der Waals. Ambas fuerzas se calcularon, en este trabajo, mediante análisis numéricos basados en el método por elementos finitos. La originalidad de este trabajo radica en la incorporación de nuevas geometrías de partícula tales como partículas esféricas, cilíndricas, cónicas y hemisféricas y, en el desarrollo de estos cálculos en un material polimérico. Los resultados mostraron que el modelo numérico desarrollado aquí puede predecir las condiciones en las que se produce el empuje de las partículas en polímeros semicristalinos. Este modelo numérico puede utilizarse para calcular las condiciones de enfriamiento que conducen a una dada distribución de partícula en compuestos y mezclas de polímeros.Publicado en: Mecánica Computacional vol. XXXV, no. 23Facultad de Ingenierí

    Modelado y simulación de la segregación de partículas no esféricas en polímeros semicristalinos

    Get PDF
    La incorporación de partículas en polímeros se utiliza ampliamente para mejorar las propiedades de estos materiales. La interacción de las partículas durante la cristalización de un polímero semicristalino con la intercara de solidificación puede segregarlas de la red cristalina y, como consecuencia, conducir a una distribución no homogénea de las mismas en la matriz. En este trabajo se investigó esta interacción debida al movimiento de la intercara de solidificación hacia una partícula inmersa en un material fundido. En esta interacción se consideran dos fuerzas principales actuantes sobre la partícula y que conducen a la segregación: la fuerza de arrastre que impulsa a las partículas hacia la interfaz y la fuerza de repulsión, que se calcula a partir de la fuerza de Lifshitz-Van der Waals. Ambas fuerzas se calcularon, en este trabajo, mediante análisis numéricos basados en el método por elementos finitos. La originalidad de este trabajo radica en la incorporación de nuevas geometrías de partícula tales como partículas esféricas, cilíndricas, cónicas y hemisféricas y, en el desarrollo de estos cálculos en un material polimérico. Los resultados mostraron que el modelo numérico desarrollado aquí puede predecir las condiciones en las que se produce el empuje de las partículas en polímeros semicristalinos. Este modelo numérico puede utilizarse para calcular las condiciones de enfriamiento que conducen a una dada distribución de partícula en compuestos y mezclas de polímeros.Publicado en: Mecánica Computacional vol. XXXV, no. 23Facultad de Ingenierí

    Modelado y simulación de la segregación de partículas no esféricas en polímeros semicristalinos

    Get PDF
    La incorporación de partículas en polímeros se utiliza ampliamente para mejorar las propiedades de estos materiales. La interacción de las partículas durante la cristalización de un polímero semicristalino con la intercara de solidificación puede segregarlas de la red cristalina y, como consecuencia, conducir a una distribución no homogénea de las mismas en la matriz. En este trabajo se investigó esta interacción debida al movimiento de la intercara de solidificación hacia una partícula inmersa en un material fundido. En esta interacción se consideran dos fuerzas principales actuantes sobre la partícula y que conducen a la segregación: la fuerza de arrastre que impulsa a las partículas hacia la interfaz y la fuerza de repulsión, que se calcula a partir de la fuerza de Lifshitz-Van der Waals. Ambas fuerzas se calcularon, en este trabajo, mediante análisis numéricos basados en el método por elementos finitos. La originalidad de este trabajo radica en la incorporación de nuevas geometrías de partícula tales como partículas esféricas, cilíndricas, cónicas y hemisféricas y, en el desarrollo de estos cálculos en un material polimérico. Los resultados mostraron que el modelo numérico desarrollado aquí puede predecir las condiciones en las que se produce el empuje de las partículas en polímeros semicristalinos. Este modelo numérico puede utilizarse para calcular las condiciones de enfriamiento que conducen a una dada distribución de partícula en compuestos y mezclas de polímeros.Publicado en: Mecánica Computacional vol. XXXV, no. 23Facultad de Ingenierí

    Mechanical behaviour of composite sandwich panels with foamed concrete core reinforced with natural fibre in four-point bending

    No full text
    The four-point bending behaviour of composite sandwich panels made of corrugated steel faces and foamed concrete (FC) cores with a density of 700 kg/m3 is reported. Plain FC (PFC) core and fibre-reinforced FC (FRFC) core, reinforced with an alkaline-treated natural fibre (henequen fibre) at a volume fraction of 1%, were used. FRFC core reinforced with polypropylene fibre was also used as a reference. The results showed that panels with FRFC cores exhibited greater initial failure load, maximum load and energy absorption when compared to the PFC cored panels, which was associated with the enhancements of ductility and toughness of the FRFC cores produced by the fibres. Several energy absorbing mechanisms were observed in the panels, including the development of major tension and shear cracks in the FC core, face wrinkling and face–core debonding. The finite element simulations showed that the face–core bonding plays a crucial role in the structural performance of the panels. The findings presented herein encourage further investigations to assess the use of sandwich panels with natural-fibre reinforced cores for construction applications.Fil: Castillo Lara, J. F.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Flores Johnson, E. A.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Valadez Gonzalez, A.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Herrera Franco, P. J.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Carrillo, J. G.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Gonzalez Chi, P. I.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Agaliotis, Eliana Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Li, Q. M.. University of Manchester; Reino Unid

    Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber

    Get PDF
    Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between 90–250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs’ measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers
    corecore