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Abstract: Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using
polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between
90–250 µm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens
were printed with a 0◦ raster angle for tension tests. The results showed that the NFRCs’ measured
density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed
that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour
content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed
PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth.
However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of
the printed PLA. Microscopic characterization after testing showed an increase in voids and defects,
with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the
NFRCs were also printed with raster angles of ±45◦ and 90◦ for comparison; the highest tensile
properties were obtained with a 0◦ raster angle. Finally, adding 3 wt% content of maleic anhydride to
the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented
herein warrant further research to fully understand the mechanical properties of printed NFRCs
made of PLA reinforced with natural henequen fibers.

Keywords: polylactic acid (PLA); natural fiber; henequen fiber; natural fiber reinforced composite
(NFRC); additive manufacturing; 3D printing; mechanical property

1. Introduction

Additive manufacturing (AM), also known as 3D printing, has been increasingly used
in the last decade due to its versatility in producing numerous products with complex
shapes and specific mechanical properties at a low cost. The increase in the use of 3D
printing over the last few years has been driven by the rise in 3D printers’ affordability and
the availability of printing materials [1]. Three-dimensional printing has been employed by
biomedical, civil engineering, aerospace, and automotive industries to make prototypes,
models, spare parts, dental crowns, artificial limbs, etc. [2–4]. One of the most popular 3D
printing techniques is fused deposition modelling (FDM), which is based on the thermal
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extrusion process of a thermoplastic filament, which is melted and deposited layer by
layer [5]. Subsequently, the deposited material is cooled and solidified, and the bond
between the extruded filaments is consolidated. FDM is becoming increasingly popular
due to its low cost, low maintenance, and the increasing variety of raw materials for 3D
printing, for instance polylactic acid (PLA), polypropylene (PP), polyethylene terephthalate
glycol (PETG), and acrylonitrile butadiene styrene (ABS) [6,7]. PLA is a linear aliphatic
thermoplastic polyester derived from lactic acid, obtained from renewable resources such
as corn or sugarcane fermentation [8–10]. PLA is biodegradable, environmentally friendly,
and emerging as a substitute for oil-based polymers. Furthermore, green composites have
been fabricated using PLA with natural fillers [11,12] or fibers [10,13–15]. One of the main
benefits of using natural particles and lignocellulosic materials in PLA-based 3D printed
materials is their availability, low cost, low weight, and environmental impact reduction.

Composites from renewable resources based on FDM technology have become attrac-
tive products for construction [12], automobiles [16], furniture [17], and other consumer
applications due to increased environmental awareness and demand for eco-friendly ma-
terials [18,19]. Natural-fiber-reinforced composite (NFRC) and wood–plastic composite
(WPC) are composite materials consisting of a thermoplastic polymer matrix with a small
content of natural fibers [20] and wood [21], respectively. While the mechanical properties
of NFRCs and WPCs fabricated by traditional methods such as extrusion or injection mold-
ing [20,22] have been extensively studied, the mechanical behavior of 3D printed PLA-based
NFRCs and WPCs is still being investigated [5,20,23]. Figueroa-Velarde et al. [24] investi-
gated the tensile and flexural properties of 3D printed PLA reinforced with 3–10% agave
fibers, which had a diameter of 37.7 µm and a length of 255 µm. They observed that both
tensile modulus and strength decreased with the increase in fiber content compared to pure
PLA. They also found a slight increase in the flexural modulus when a fiber content of 3%
was used compared to pure PLA. Matsuzaki et al. [25] studied the tensile properties of 3D
printed PLA reinforced with continuous jute fibers. They found that the tensile modulus,
tensile strength, and strain to failure of the 3D printed reinforced composites increased
compared to those of pure PLA. Hinchcliffe et al. [26] investigated 3D printed PLA-based
ducted I-beams, in which continuous flax fiber strands with 0.5 mm diameter were threaded
through the ducts. They observed that pre-stressing the fibers resulted in an improvement
in flexural properties compared to unreinforced specimens. Depuydt et al. [27] studied the
tensile properties of filaments for 3D printing made of PLA compounded with plasticizer
and bamboo fibers. They observed that the tensile modulus of the reinforced filaments
increased by 215% when long bamboo fibers with a median diameter of 254 µm and length
of 2015 µm were used. However, no strength increase was observed in the reinforced
filaments. Liu et al. [28] studied the tensile strength of 3D printed PLA composites with
pine wood flour with particle sizes of <50 µm. They found that the tensile strength in-
creased with an increased wood flour content of up to 15% and a decrease for wood flour
contents higher than 15%. Baghia et al. [29] investigated the tensile properties of 3D printed
wood-filled PLA samples containing 20% ball-milled wood flour from poplar trees; the
flour particles had a median diameter of 43 µm. They found that the tensile modulus
for the 3D printed reinforced samples increased compared to pure PLA, while the tensile
strength and strain at break decreased. Kariz et al. [30,31] studied the tensile strength of
filaments for 3D printing made of PLA with 10–50% beech wood content with particle
sizes of <237 µm. They reported that the tensile strength of the filaments increased with
a 10% content of wood; however, a higher content of wood resulted in a decrease in the
tensile strength. Tao et al. [32] investigated the tensile behavior of 3D printed PLA/wood
flour specimens with a flour content of 5% with a mean particle size of 14 µm. They found
that the tensile stress increased for strains lower than 1.5% and decreased for larger strains
compared to pure PLA.

Based on the literature mentioned above, studies addressing the tensile properties of
3D printed PLA-based composites reinforced with natural fibers are scarce. Moreover, re-
search on using henequen fibers (Agave fourcroydes Lem.) to reinforce 3D printed NFRC has
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not previously been reported to the authors’ knowledge. The henequen plant is endemic to
the Yucatan peninsula in Mexico. Henequen fibers are lignocellulose fibers with a high cel-
lulose content (60%) extracted from the leaves of the henequen plant. These fibers are used
to fabricate ropes, mats, sacks, and bags [33]. In addition, henequen fibers have been used to
reinforce polymer composites [34,35] and cement-based composites [36,37]. Furthermore,
some studies have reported the mechanical and thermal properties of PLA/sisal fiber com-
posites [38,39], where the sisal plant is a close relative of the henequen plant [40]. This work
characterizes the tensile behavior of 3D printed NFRCs reinforced with different contents
of henequen fiber flour. In addition, differential scanning calorimetry (DSC) analysis and
microscopic characterization of the printed PLA and NFRCs are also presented.

2. Materials and Methods
2.1. Materials
2.1.1. Polylactic Acid (PLA)

Extrusion-grade PLA Ingeo 2003D in pellet form (NatureWorks, USA) derived from
renewable resources was used in this work. According to the manufacturer, the PLA
material has a density of 1240 kg/m3, a melt flow index of 6 g/10 min (210 ◦C, 2.16 kg),
a melting temperature of 210 ◦C, a tensile elastic modulus of 3.5 GPa, and a tensile strength
of 60 MPa [41].

2.1.2. Henequen Fibers

Long henequen fibers (Figure 1a) were obtained from a producer in Baca, Yucatan
(Desfibradora La Lupita, Baca, Yucatan, Mexico). The chemical composition of the henequen
fiber is cellulose (60 wt%), hemicellulose (28 wt%), lignin (8 wt%), and extractives (4 wt%) [42],
while its crystalline fraction is 0.4 [43]. The fibers were subsequently chopped to a length
of 10 mm. First, the henequen fibers were reduced by a Brabender mill type 880804
(Brabender, Duisburg, Germany) to a maximum particle size of 600 µm. Next, the particles
were reduced by a mill model Wiley Mini Mill (Thomas Scientific, Swedesboro, USA) to a
maximum size of 250 µm. The flour was then sieved using a four-sieve column (250 µm,
180 µm, 150 µm, 90 µm) to obtain flour with particle sizes between 90 and 250 µm. The
henequen flour (Figure 1b) was subsequently used to fabricate the NFRC filaments. The
selected particle size range was based on preliminary results showing that particles larger
than 250 µm affected the fabrication process of the filaments and 3D printed samples by
obstructing the extruder die and the printer nozzle. In addition, the smallest particles
(<90 µm) were discarded to obtain a more homogenous particle size distribution.
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Figure 1. (a) henequen fibers; (b) henequen fiber flour.

2.2. NFRC Filament Preparation

Before filament fabrication, PLA pellets were dried in an oven at 90 ◦C for 2 h, while the
henequen flour was dried at 105 ◦C for 24 h. PLA/henequen NFRCs were prepared using
a reinforcement content of 1–5 wt%. Table 1 shows the NFRC formulations. A single extru-
sion process [44] was used to fabricate the NFRC filaments. In this process, a mix of PLA
pellets and flour was placed in the chamber of a single screw extruder Noztek Pro (Noztek,
Shoreham-By-Sea, UK) equipped with a 2.8-mm diameter die, as shown in Figure 2a;
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subsequently, filaments were extruded using temperatures in the range of 175–185 ◦C at
15 rpm. The PLA/henequen extruded filaments (Figure 2b) had an average diameter of
2.78 ± 0.03 mm. As a reference, pristine PLA filaments were also fabricated following the
abovementioned process without adding flour (Table 1). In addition, a formulation with
1 wt% content of fiber flour and 3 wt% content of maleic anhydride (Sigma–Aldrich Chem.
Corp., St. Louis, MO, USA), employed as a coupling agent, was used to fabricate filaments
(Table 1).

Table 1. Formulation of the filaments for 3D printing of PLA and NFRCs.

Material Flour Content (wt%) PLA Content (wt%) Nomenclature

Pristine PLA 0 100 P_PLA

PLA/Henequen

1 99 PLA/H1
2 98 PLA/H2
3 97 PLA/H3
4 96 PLA/H4
5 95 PLA/H5

PLA/Henequen/maleic
anhydride 1 1 96 PLA/H1_MA

1 With a maleic anhydride content of 3 wt%.
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Figure 2. (a) Extrusion process of the NFRC filaments; (b) PLA/henequen filament with a fiber flour
content of 3 wt%.

2.3. 3D Printing of NFRC Specimens

NFRC specimens for the tensile tests were manufactured using the Ultimaker S5 3D
printer (Ultimaker, Utrecht, The Netherlands) (Figure 3a) at a temperature of 215 ◦C, with a
plate temperature of 60 ◦C, a filament feed speed of 30 mm/s, and an infill density of 100%.
An infill pattern of “Lines” was selected in the Ultimaker Cura 4.11.0 software (Ultimaker,
Utrecht, The Netherlands). A layer thickness of 0.15 mm was used to fabricate samples
with a total thickness of 3.2 mm. The specimens were printed in a flat orientation (built
direction) with a raster angle of 0◦ (Figure 3b); that is, the printing direction was parallel
to the tensile testing direction (Figure 3b). In addition, a 0.8-mm diameter printing nozzle
was used. The dimensions of the 3D printed samples were according to the ASTM D638
standard (Type V specimens), which had a gauge length of 12 mm and a cross-sectional area
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of 3.18 × 3.2 mm2 in the gauge region. In addition, specimens with a PLA/H1 formulation
(Table 1) were printed with raster angles of ±45◦ and 90◦ (Figure 3c).
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Figure 3. (a) 3D printer; (b) 3D printed NFRC tensile samples with a raster angle of 0◦; (c) 3D printed
NFRC tensile samples with raster angles of 0◦, ±45◦ and 90◦ and with a fiber flour content of 1%.

2.4. Scanning Electron Microscopy (SEM)

Morphological observations were carried out by scanning electron microscopy (SEM)
using an SEM microscope Jeol JSM 6360LV (JEOL, Tokyo, Japan). All samples were coated
with a thin layer of gold for electron conductivity. In addition, SEM observations were
conducted on tested specimens to observe the fracture characteristics.

2.5. Density and Porosity

Printed pristine PLA and NFRCs densities were measured using a Techne density
gradient column (Cole-Parmer, Vernon Hills, IL, USA) filled with an aqueous solution
of calcium nitrate at 23 ◦C [45–47]. The porosity P of the printed PLA and NFRCs was
calculated using the following equation:

P(%) =

(
1 − ρm

ρt

)
× 100 (1)

where ρm is the measured density of the printed PLA and NFRCs, while ρt is the theoretical
density of the printed PLA and NFRCs, which was estimated using the following equation:

ρt =
1

WPLA
ρPLA

+ WH
ρH

(2)

where ρPLA is the solid density of the PLA reported by the manufacturer (1240 kg/m3), ρH
is the density of the henequen fiber reported as 1570 kg/m3 [43], and WPLA and WH are the
weight fractions of PLA and henequen-fiber flour, respectively.

2.6. Differential Scanning Calorimetry (DSC) Analysis

A differential scanning calorimetry (DSC) analysis of printed PLA and NFRCs was
performed using a DSC 7 calorimeter (Perkin-Elmer, Waltham, MA, USA) to study NFRCs’
melting behavior and crystallinity. Only the first heating was performed from room
temperature to 220 ◦C at a heating rate of 5 ◦C/min under an inert nitrogen atmosphere.
The cold crystallization temperature Tcc and melting temperature Tm were recorded during
the first heating. The degree of crystallinity Xc was calculated during the first heating to
determine the effect of the printing process on the crystallinity of the printed PLA and
NFRCs. A similar approach has been used previously, in which only the first heating curves
were recorded to correlate the degree of crystallinity resulting from the 3D printing process
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with the mechanical properties without eliminating the thermal history [48,49]. Xc was
calculated using the following equation:

Xc =
∆Hm − ∆Hcc

∆Hmo × WPLA
(3)

where ∆Hm is the melting enthalpy, ∆Hcc is the cold crystallization enthalpy, ∆Hmo = 93 J/g
is the melting enthalpy of 100% crystalline PLA [50], and WPLA is the weight fraction of
PLA in the sample.

2.7. Tensile Testing

Uniaxial tensile tests were performed using a universal testing machine Shimadzu
AGX-10 (Shimadzu, Kyoto, Japan), equipped with a 1 kN load cell at a crosshead speed of
1 mm/min at room temperature. The tensile tests were carried out according to the ASTM
D638 standard.

2.8. Statistical Analysis

The results are presented as the mean ± standard deviation of at least three repetitions.
Statistical analysis was carried out by a one-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparison test, which was performed using the stats.tukey_hsd function
from the SciPy Python package [51]. It was considered a significant difference between
means when P ≤ 0.05. For the DSC analysis, only one sample of each type of printed
material was tested; thus, no statistical analysis of the DSC results is presented.

3. Results and Discussion
3.1. Particle Size Distribution

Figure 4a shows the weight percentage of the particle sizes of the henequen flour used
to fabricate the NFRCs. The particle sizes were between 90 and 250 µm, as aforementioned.
It can be seen in Figure 4a that the distribution is skewed left, and most particle sizes were
between 90 and 150 µm. The henequen flour comprised a more significant percentage (67%)
of small particles (90–150 µm). Conversely, the percentage of large particles (180–250 µm)
was only 10%. The estimated mean particle size from Figure 4a is 140 µm. Figure 4b shows
an SEM image of the henequen flour particles; it can be seen that the particles are mainly
flat and elongated in shape.
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3.2. Density and Porosity

Table 2 shows the theoretical and measured densities and calculated porosity (using
Equation (1)) for the printed PLA and NFRCs. As expected, the density increases with
the increase in henequen-flour content, considering that the henequen fiber has a larger
density (1570 kg/m3) than the PLA (1240 kg/m3). However, it can also be seen that the
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measured density is lower than the theoretical density, which is also expected considering
the voids between adjacent layers and deposited beads generated during the printing
process (Figure 5), which largely contributed to the porosity of the printed materials. The
SEM image in Figure 5 was taken from the surface of a printed PLA sample fractured in
liquid nitrogen. The shape of the voids observed in Figure 5 resemble triangles, which
shows that the voids were formed during the printing process [52]; the voids’ size depends
on the printing conditions, such as printing speed and nozzle or plate temperature [53].
These triangle-shaped voids have also been observed in 3D printed PLA/glass fiber com-
posites [17]. The porosity of the printed PLA due to the triangle-shaped voids between
layers and beads was roughly estimated as 4–5% by measuring the area of the voids in
the SEM images (Figure 5) using the image-processing software ImageJ v. 1.60 (National
Institutes of Health, Bethesda, MD, USA). The estimated porosity of the pristine PLA using
the SEM images (4–5%) was lower than the calculated porosity (Table 2). This observation
suggests that there are voids and defects not visible in the SEM images, which could have
formed during the printing process due to the non-uniform surface of the NFRC filaments
produced by the henequen particles. This rough surface could have contributed to the
formation of air gaps between layers or adjacent deposited beads [54].

Table 2. Density and porosity values of the 3D printed materials.

Material Theoretical Density
(kg/m3)

Measured Density
(kg/m3)

Porosity P
(%)

P_PLA 1240.0 1154.4 ± 0.5 d 6.984 ± 0.047 c

PLA/H1 1242.6 1158.8 ± 0.3 c 6.825 ± 0.028 d

PLA/H2 1245.2 1162.3 ± 0.5 b 6.740 ± 0.046 d

PLA/H3 1247.9 1163.1 ± 0.4 b 6.873 ± 0.036 c

PLA/H4 1250.5 1159.6 ± 0.4 c 7.350 ± 0.037 a

PLA/H5 1253.2 1165.8 ± 0.5 a 7.052 ± 0.046 b

Note: Values in a column with different superscript letters are significantly different (P < 0.05).
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Furthermore, it is noted that the calculated porosity in Table 2 tends to increase with the
increase in henequen flour content slightly. This observation could be explained by the fact
that a chemical incompatibility exists between the hydrophobic molecules of thermoplastics
and the hydrophilic lignocellulosic molecules of natural fibers [55,56], which could likely
produce voids between the PLA matrix and the henequen fibers. In addition, for a higher
content of henequen flour, fiber agglomeration is also expected, which could contribute to
an increase in the porosity of the NFRCs.
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3.3. DSC Analysis

Figure 6 shows the DSC heating curves of the printed PLA and NFRC specimens, while
the corresponding thermal parameters are summarized in Table 3. The first peak at ~120 ◦C
(Figure 6) corresponds to a broad exothermic transition of low intensity associated with
the cold crystallization of a semicrystalline polymer [57]. In addition, this peak shows
that during PLA and NFRC heating, a reorganization of the amorphous domains could
occur, promoting crystalline structure formation. The second peak, at higher temperatures
(~150 ◦C), corresponds to an exothermic transition indicating the melting of the crystalline
structures produced during the cooling of 3D printed samples and the cold crystallization.

Polymers 2022, 14, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 6. DSC heating curves of 3D printed PLA and NFRC specimens. 

Table 3. Thermal properties and degree of crystallinity of 3D printed PLA and NFRCs. 

Material 

Cold  
Crystallization 
Temperature 𝑻𝒄𝒄 (°C) 

Cold  
Crystallization 

Enthalpy ∆𝑯𝒄𝒄 (J/g) 

Melting  
Temperature 𝑻𝒎 (°C) 

Melting 
Enthalpy ∆𝑯𝒎 (J/g) 

Degree of 
Crystallinity 𝑿𝒄 (%) 

P_PLA 117.8 11.523 150.1 12.881 1.45 
PLA/H1 119.9 9.781 150.9 11.184 1.59 
PLA/H2 118.0 12.744 150.0 14.293 1.65 
PLA/H3 122.4 12.445 150.9 14.271 1.95 
PLA/H4 116.7 13.384 151.2 15.153 1.89 
PLA/H5 119.0 12.487 150.5 14.437 2.08 

3.4. Tensile Tests 
Figure 7 shows the average tensile stress–strain curves of pristine PLA and NFRC 

specimens printed with a raster angle of 0°. It can be seen that most of the samples 
exhibited an initial linear elastic behavior up to around 40 MPa, followed by a non-linear 
region until the maximum stress was reached. After the maximum stress peak, a reduction 
in stress with increasing strain was observed until failure occurred.  

Figure 6. DSC heating curves of 3D printed PLA and NFRC specimens.

Table 3. Thermal properties and degree of crystallinity of 3D printed PLA and NFRCs.

Material

Cold
Crystallization
Temperature

Tcc (◦C)

Cold
Crystallization

Enthalpy
∆Hcc (J/g)

Melting
Temperature

Tm (◦C)

Melting
Enthalpy
∆Hm (J/g)

Degree of
Crystallinity

Xc (%)

P_PLA 117.8 11.523 150.1 12.881 1.45

PLA/H1 119.9 9.781 150.9 11.184 1.59
PLA/H2 118.0 12.744 150.0 14.293 1.65
PLA/H3 122.4 12.445 150.9 14.271 1.95
PLA/H4 116.7 13.384 151.2 15.153 1.89
PLA/H5 119.0 12.487 150.5 14.437 2.08

It can be seen in Table 3 that the degree of crystallinity of the printed pristine PLA is
1.45%, which is similar to the reported value for printed PLA 2003D [48]. This low degree
of crystallinity is attributed to the high levels of D-isomer content [58]. It can also be seen in
Table 3 that the degree of crystallinity slightly increases with the increase in henequen flour
content. This increase could be attributed to the presence of the lignocellulosic material
in the NFRCs. The natural henequen fiber can act as a nucleation agent facilitating the
crystallization of the PLA [59].

3.4. Tensile Tests

Figure 7 shows the average tensile stress–strain curves of pristine PLA and NFRC
specimens printed with a raster angle of 0◦. It can be seen that most of the samples exhibited
an initial linear elastic behavior up to around 40 MPa, followed by a non-linear region until
the maximum stress was reached. After the maximum stress peak, a reduction in stress
with increasing strain was observed until failure occurred.
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Figure 7. Average tensile stress–strain curves of 3D printed PLA and NFRCs with different contents
of henequen flour.

Table 4 shows the tensile Young’s modulus, maximum stress, and strain to failure of the
printed PLA and NFRCs obtained from the stress–strain curves. It is noted that the Young’s
modulus of the printed pristine PLA is 1.93 GPa, which is much lower than the value
reported by the manufacturer (3.5 GPa). This reduction in mechanical properties could
be explained by the void formation between printed layers and beads, increased porosity
in the material produced by the printing process [60], and the reduction in the molecular
weight due to the extrusion and printing processes [61,62]. In addition, debonding between
adjacent deposited beads (Figure 5) [63] and changes in the degree of crystallinity during
the FDM process [24] could also have affected the material’s mechanical performance. It
can be seen in Table 4 that the Young’s modulus of the NFRCs is lower than that of the
printed pristine PLA. This observation is explained by the fact that adding flour to the PLA
leads to particle agglomeration and voids, reducing the material’s stiffness [64].

Table 4. Tensile mechanical properties of 3D printed PLA and NFRCs.

Material Young’s Modulus
(GPa)

Maximum Stress
(MPa)

Strain to Failure
(mm/mm)

P_PLA 1.93 ± 0.10 a 56.7 ± 2.3 a 0.051 ± 0.008 b

PLA/H1 1.48 ± 0.19 b 60.1 ± 1.8 a 0.078 ± 0.010 a

PLA/H2 1.62 ± 0.11 ab 48.9 ± 0.9 b 0.060 ± 0.018 ab

PLA/H3 1.43 ± 0.06 b 41.4 ± 1.1 c 0.052 ± 0.003 b

PLA/H4 1.58 ± 0.07 b 40.4 ± 1.2 c 0.043 ± 0.002 b

PLA/H5 1.49 ± 0.11 b 35.5 ± 5.3 c 0.045 ± 0.004 b

Note: Values in a column with different superscript letters are significantly different (P < 0.05).

It can be seen in Table 4 that the maximum stress of the printed PLA (56.7 MPa) is
slightly lower than the value reported by the manufacturer (60 MPa), which is attributed
to the triangle-shaped voids between layers [65]. However, for PLA/H1, the maximum
stress is 60 MPa, which is 5.3% higher than that of the printed pristine PLA. Moreover, the
strain to failure of the PLA/H1 is 0.078 (Figure 8c), which is 53% higher than that of the
printed pristine PLA (0.051). This improvement in strength and ductility is attributed to
the henequen fibers acting as reinforcement and delaying crack growth. Furthermore, for
flour contents of 2% and higher, the maximum stress of the NFRCs is lower than those
of the printed pristine PLA and PLA/H1. Moreover, the strain to failure decreases with



Polymers 2022, 14, 3976 10 of 17

the increase in flour content. This observation is attributed to fiber agglomeration and
increased porosity.
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Figure 8. SEM images of the fracture surfaces after tensile testing of the 3D printed NFRCs:
(a) PLA/H1; (b) PLA/H1 (close-up view); (c) PLA/H1 (close-up view); (d) PLA/H2; (e) PLA/H3;
(f) PLA/H4; (g) PLA/H5; (h) PLA/H5 (close-up view); (i) PLA/H5 (close-up view).

Figure 8 shows SEM images of the fracture surfaces after the tensile testing of the
3D printed NFRCs. It can be seen that in all cases, there is debonding between adjacent
beads (Figure 8a), which is attributed to insufficient bonding produced during the FDM
process and stress concentration generated at pre-existing voids formed during the FDM
process [53]. This type of debonding has been previously reported for printed PLA [66]. The
debonding may have been caused by the presence of voids and bead shrinkage induced by
the semicrystalline nature of the PLA [49], resulting in insufficient surface contact between
adjacent beads [67]. This, in turn, may have produced a weak bond between adjacent beads
leading to debonding when the load was applied to the specimens. In addition, it can be
seen in Figure 8 that there is an increase in the apparent surface roughness with the increase
in flour content attributed to the henequen particles (Figure 8c). This observation is more
evident for flour contents of 4% and 5%, for which the surface is rough and has several
voids (Figure 8f,g). These voids include those formed between deposited beads during the
FDM process and those between layers (Figure 8f). The latter void formation is attributed
to large particles and particle agglomeration. Finally, voids are also observed inside the
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deposited beads, attributed again to the large particles (Figure 8g) and fiber agglomeration
(Figure 8i). This increase in defects and fiber agglomeration with the increase in flour
content will ultimately affect the mechanical properties of the NFRCs.

Effect of Printing Direction and Coupling Agent

Figure 9 shows the average tensile stress–strain curves of the pristine PLA specimens,
PLA/H1_MA specimens, and PLA/H1 specimens printed with raster angles of 0◦, ±45◦,
and 90◦, while Table 5 shows the mechanical properties obtained from the stress-strain
curves. It can be seen in Figure 9 that for the specimens printed with a raster angle of ±45◦,
there was a reduction in Young’s modulus and maximum stress compared to the specimens
printed with a raster angle of 0◦. Furthermore, the specimens with a raster angle of ±90◦

exhibited a further reduction in Young’s modulus and maximum stress compared to the
other two printing orientations. However, the samples printed with raster angles of ±45◦

and 90◦ exhibited higher strain to failure than the specimens printed with a raster angle of
0◦. These observations are in agreement with the results obtained for PLA printed with
raster angles of 0◦, ±45◦, and 90◦, in which the specimens printed with a raster angle of 0◦

exhibited the best mechanical performance, while the samples printed with a raster angle
of 90◦ showed the worse mechanical performance [68,69]. This observation is explained by
the fact that the individual beads of the specimens printed with a raster angle of 90◦ are
perpendicular to the tensile load; thus, the fracture of the specimen is mainly determined
by the bonding between adjacent beads [68].
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Figure 9. Average tensile stress–strain curves of 3D printed P_PLA and PLA/H1_MA specimens,
and PLA/H1 specimens printed with raster angles of 0◦, ±45◦, and 90◦.

Table 5. Tensile mechanical properties of 3D printed P_PLA and PLA/H1_MA specimens, and
PLA/H1 specimens printed with raster angles of 0◦, ±45◦, and 90◦.

Material Young’s Modulus
(GPa)

Maximum Stress
(MPa)

Strain to Failure
(mm/mm)

P_PLA 1.93 ± 0.10 a 56.7 ± 2.3 ab 0.051 ± 0.008 b

PLA/H1 (0◦) 1.48 ± 0.19 b 60.1 ± 1.8 a 0.078 ± 0.010 ab

PLA/H1 (±45◦) 1.37 ± 0.06 b 51.2 ± 4.4 bc 0.109 ± 0.019 a

PLA/H1 (90◦) 1.25 ± 0.11 b 43.9 ± 2.4 c 0.089 ± 0.021 a

PLA/H1_MA 1.48 ± 0.07 b 63.9 ± 3.7 a 0.091 ± 0.006 a

Note: Values in a column with different superscript letters are significantly different (P < 0.05).
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It can be seen in Figure 9 that the specimens with a coupling agent (PLA/H1_AM)
exhibited a similar Young’s modulus to that of the samples without a coupling agent
(PLA/H1) and lower than that of the pristine PLA (P_PLA). It can also be seen that the
PLA/H1_AM specimens exhibited higher maximum stress and strain to failure than the
P_PLA and PLA/H1 specimens; however, further research should be performed to confirm
these improved properties.

3.5. Discussion

The results presented here have shown that henequen fibers can be used to fabricate
3D printed PLA-based composites with improved mechanical properties using natural
resources. These composites, made from renewable materials, are environmentally friendly
and could promote sustainability. In addition, the results showed that printed PLA rein-
forced with 1% henequen flour exhibited higher maximum stress and ductility than printed
PLA without reinforcement.

However, one of the main concerns in developing these printed NFRCs is the chemical
incompatibility between the hydrophilic lignocellulosic henequen fiber and the hydropho-
bic PLA matrix, which produces poor adhesion [70]. The results showed a decrease in
mechanical properties for flour contents of 2% and higher, which was partly attributed to
the poor adhesion between the PLA and the henequen fibers; this poor adhesion could,
in turn, have produced fiber agglomeration [71]. Therefore, a strong adhesion at the
fiber/matrix interface is desirable for the effective transfer of stresses from the matrix to
the reinforcement, resulting in better mechanical properties for the composite. For this
reason, using methods to promote henequen particles’ interfacial bonding is essential to
improve the performance of these NFRCs. Using a chemical alkaline treatment on the
henequen fiber followed by surface treatment with a silane coupling agent could enhance
the interface adhesion [40,72]. Thermal treatments could also improve the adhesion be-
tween the henequen fiber and the PLA matrix by removing hydrophilic materials such as
hemicellulose [73]. Finally, a coupling agent, such as maleic anhydride, could be used to
improve the PLA matrix–henequen fiber adhesion and, thus, the mechanical properties of
the NFRCs [74].

The NFRCs mechanical results, along with the SEM images of fracture surfaces, suggest
that with the increase in henequen-flour content (>2%), there is an increase in porosity and
void formation, which may be attributed to particle agglomeration resulting in a reduction
in mechanical properties. However, further studies should be performed to confirm these
observations and to understand how flour content affects the overall performance of the
NRCFs. A careful selection of particle sizes and a double extrusion process [44] could
increase the NFRC filaments’ homogeneity and particle dispersion. These enhancements
could, in turn, improve their printability and allow higher flour content incorporation
without compromising mechanical performance.

The SEM images showed that the NFRCs exhibited debonding between adjacent
deposited beads, mainly attributed to interfacial defects and voids formed during the
printing process; these defects ultimately acted as stress concentrators and points of failure
initiation. The presence of voids and bead shrinkage caused by the semicrystalline nature
of the PLA [67] may have resulted in insufficient surface contact between beads and poor
bonding, resulting in a reduction in mechanical properties due to debonding when the load
was applied. It has been reported that increasing the contact area between adjacent beads
and using slow cooling rates [75] can reduce thermal gradient and promote molecular
diffusion [76], resulting in improved bonding and increased mechanical properties. In
addition, using an increased build plate temperature can minimize the adverse effects of
thermal gradients on bonding [49].

It has been reported that the infill pattern used during the 3D printing of PLA speci-
mens affects their mechanical properties [77]. For instance, it was reported that PLA tensile
specimens printed with a flat orientation showed the highest maximum tensile strength
when linear and concentric infill patterns were used compared to a Hilbert curve infill
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pattern [78]. Moreover, it was found that the concentric infill pattern produced the highest
tensile properties in 3D printed PLA specimens compared to the grid and tri-hexagonal
patterns [79]. For these reasons, the infill pattern should be considered an important factor
when designing 3D printed parts to obtain optimal mechanical properties.

Therefore, it is recommended to investigate different parameters that could improve
the printing quality and influence the printed NFRCs’ mechanical performance, such
as processing temperatures, layer orientation, deposition speed, infill pattern, and layer
thickness [80]. Furthermore, our results warrant further research of NFRCs made of
printed PLA reinforced with natural henequen fibers for construction and automotive
applications [16,81]. These studies should include strategies to improve fiber–matrix
adhesion and reduce fiber agglomeration during the filament extrusion process and defects
during the printing process. In addition, further mechanical testing, including bending
and compression tests, should be performed to fully understand the mechanical behavior
of NFRCs.

4. Conclusions

In this work, natural fiber-reinforced composite (NFRC) filaments for 3D printing were
fabricated using PLA reinforced with 1–5 wt% flour from henequen fibers. The filaments
were subsequently used for the 3D printing of specimens for tension tests with a 0◦ raster
angle. The effect of the flour content on the tensile properties was evaluated. Thermal,
physical, and microscopic characterizations of the printed materials were also performed.
In addition, for 1 wt% flour content, the NFRCs were also printed with raster angles of
±45◦ and 90◦. Finally, an NFRC formulation with 3 wt% content of maleic anhydride and
1 wt% flour content was investigated. The following conclusions can be drawn from the
results of this study:

• The henequen fiber flour used to fabricate the NFRCs consisted of particles with sizes
between 90–250 µm comprising a more significant percentage (67%) of small particles
(90–150 µm).

• The measured density and porosity of the NFRCs increased with the increase in
flour content.

• Thermal analysis by DSC showed that adding henequen flour to the PLA matrix
increased the NFRCs’ degree of crystallinity.

• The Young’s modulus of the NFRCs was lower than that of the printed pristine PLA,
which was attributed to particle agglomeration and voids.

• The maximum stress and strain to failure of the NFRC with 1% flour content were
higher than those of the printed PLA, attributed to the henequen fibers acting as
reinforcement and delaying crack growth.

• However, for 2% and higher flour contents, the NFRCs’ maximum stress was lower
than those of the printed pristine PLA and PLA with 1% flour content.

• Microscopic characterization of NFRCs after tensile testing showed an increase in
voids and defects with the increase in flour content, which was attributed to particle
agglomeration in the material.

• For 1 wt% flour content, the highest tensile properties were obtained with a 0◦ raster angle.
• Adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content

slightly increased the maximum stress.
• The mechanical results indicated that printed NFRCs made of PLA reinforced with

henequen fiber have the potential to be used as sustainable materials with improved
mechanical properties; however, further research is still required to understand the
mechanical performance of these materials fully.
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