7 research outputs found

    Two-Color Bright Squeezed Vacuum

    Full text link
    In a strongly pumped non-degenerate traveling-wave OPA, we produce two-color squeezed vacuum with up to millions of photons per pulse. Our approach to registering this macroscopic quantum state is direct detection of a large number of transverse and longitudinal modes, which is achieved by making the detection time and area much larger than the coherence time and area, respectively. Using this approach, we obtain a record value of twin-beam squeezing for direct detection of bright squeezed vacuum. This makes direct detection of macroscopic squeezed vacuum a practical tool for quantum information applications.Comment: 4 pages, 4 figure

    Polarization-Entangled Light Pulses of 10^5 Photons

    Full text link
    We experimentally demonstrate polarization entanglement for squeezed vacuum pulses containing more than 10^5 photons. We also study photon-number entanglement by calculating the Schmidt number and measuring its operational counterpart. Theoretically, our pulses are the more entangled the brighter they are. This promises important applications in quantum technologies, especially photonic quantum gates and quantum memories.Comment: 8 pages, 6 figure

    Arbitrary-order lensless ghost imaging with thermal light

    Full text link
    Arbitrary Nth-order (N2N\geq2) lensless ghost imaging with thermal light has been performed for the first time by only recording the intensities in two optical paths. It is shown that the image visibility can be dramatically enhanced as the order N increases. It is also found that longer integration times are required for higher-order correlation measurements as N increases, due to the increased fluctuations of higher-order intensity correlation functions.Comment: Updated version; some more detailed explanations provide
    corecore