8 research outputs found

    A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy

    Get PDF
    The majority of long-duration (>2 s) gamma-ray bursts (GRBs) arise from the collapse of massive stars, with a small proportion created from the merger of compact objects. Most of these systems form via standard stellar evolution pathways. However, a fraction of GRBs may result from dynamical interactions in dense environments. These channels could also contribute substantially to the samples of compact object mergers detected as gravitational wave sources. Here we report the case of GRB 191019A, a long GRB (a duration of T 90 = 64.4 ± 4.5 s), which we pinpoint close (⪅100 pc projected) to the nucleus of an ancient (>1 Gyr old) host galaxy at z = 0.248. The lack of evidence for star formation and deep limits on any supernova emission disfavour a massive star origin. The most likely route for progenitor formation is via dynamical interactions in the dense nucleus of the host. The progenitor, in this case, could be a compact object merger. These may form in dense nuclear clusters or originate in a gaseous disc around the supermassive black hole. Identifying, to the best of our knowledge, a first example of a dynamically produced GRB demonstrates the role that such bursts may have in probing dense environments and constraining dynamical fractions in gravitational wave populations

    Cosmological Fast Optical Transients with the Zwicky Transient Facility: A Search for Dirty Fireballs

    Get PDF
    Dirty fireballs are a hypothesized class of relativistic massive-star explosions with an initial Lorentz factor Γinit below the Γinit ∼ 100 required to produce a long-duration gamma-ray burst (LGRB), but which could still produce optical emission resembling LGRB afterglows. Here we present the results of a search for on-axis optical afterglows using the Zwicky Transient Facility (ZTF). Our search yielded seven optical transients that resemble on-axis LGRB afterglows in terms of their red colors (g − r > 0 mag), faint host galaxies (r > 23 mag), rapid fading (dr/dt > 1 mag day−1), and in some cases X-ray and radio emission. Spectroscopy of the transient emission within a few days of discovery established cosmological distances (redshift z = 0.876 to 2.9) for six of the seven events, tripling the number of afterglows with redshift measurements discovered by optical surveys without a γ-ray trigger. A likely associated LGRB (GRB 200524A, GRB 210204A, GRB 210212B, and GRB 210610B) was identified for four events (ZTF 20abbiixp/AT 2020kym, ZTF 21aagwbjr/AT 2021buv, ZTF 21aakruew/AT 2021cwd, and ZTF 21abfmpwn/AT 2021qbd) post facto, while three (ZTF 20aajnksq/AT 2020blt, ZTF 21aaeyldq/AT 2021any, and ZTF 21aayokph/AT 2021lfa) had no detected LGRB counterpart. The simplest explanation for the three “orphan” events is that they were regular LGRBs missed by high-energy satellites owing to detector sensitivity and duty cycle, although it is possible that they were intrinsically subluminous in γ-rays or viewed slightly off-axis. We rule out a scenario in which dirty fireballs have a similar energy per solid angle to LGRBs and are an order of magnitude more common. In addition, we set the first direct constraint on the ratio of the opening angles of the material producing γ-rays and the material producing early optical afterglow emission, finding that they must be comparable

    Varying linear polarisation in the dust-free GRB 210610B

    No full text
    Long gamma ray bursts (GRBs) are produced by the collapse of some very massive stars, which emit ultra-relativistic jets. When the jets collide with the interstellar medium they decelerate and generate the so-called afterglow emission, which has been observed to be polarised. In this work we study the polarimetric evolution of GRB 210610B afterglow, at z=1.1341. This allows to evaluate the role of geometric and/or magnetic mechanisms in the GRB afterglow polarisation. We observed GRB 210610B using imaging polarimetry with CAFOS on the 2.2 m Calar Alto Telescope and FORS2 on the 4 × 8.1 m Very Large Telescope. Complementary optical spectroscopy was obtained with OSIRIS on the 10.4 m Gran Telescopio Canarias. We study the GRB light-curve from X-rays to optical bands and the Spectral Energy Distribution (SED). This allows us to strongly constrain the line-of-sight extinction. Finally, we study the GRB host galaxy using optical/NIR data to fit the SED and derive its integrated properties. GRB 210610B had a bright afterglow with a negligible line-of-sight extinction. Polarimetry was obtained at three epochs: during an early plateau phase, at the time when the light curve breaks, and after the light curve steepened. We observe an initial polarisation of ∼4% that goes to zero at the time of the break, and then increases again to ∼2% with a change of the position angle of 54±9 deg. The spectrum show features with very low equivalent widths, indicating a small amount of material in the line-of-sight within the host. The lack of dust and the low amount of material on the line-of-sight to GRB 210610B allow us to study the intrinsic polarisation of the GRB optical afterglow. We find the GRB polarisation signals are consistent with ordered magnetic fields in refreshed shock or/and hydrodynamics-scale turbulent fields in the forward shock.</p

    GRB 160410A: The first chemical study of the interstellar medium of a short GRB

    Get PDF
    Short gamma-ray bursts (SGRBs) are produced by the coalescence of compact binary systems which are remnants of massive stars. GRB 160410A is classified as a short-duration GRB with extended emission and is currently the farthest SGRB with a redshift determined from an afterglow spectrum and also one of the brightest SGRBs to date. The fast reaction to the Neil Gehrels Swift Observatory alert allowed us to obtain a spectrum of the afterglow using the X-shooter spectrograph at the Very Large Telescope (VLT). The spectrum shows several absorption features at a redshift of z = 1.7177, in addition, we detect two intervening systems at z = 1.581 and z = 1.444. The spectrum shows Ly α in absorption with a column density of log (N(H I)/cm2) = 21.2 ± 0.2 which, together with Fe II, C II, Si II, Al II, and O I, allow us to perform the first study of chemical abundances in a SGRB host galaxy. We determine a metallicity of [X/H] = −2.3 ± 0.2 for Fe II and −2.5 ± 0.2 for Si II and no dust depletion. We also find no evidence for extinction in the afterglow spectral energy distribution modelling. The environment has a low degree of ionization and the C IV and Si IV lines are completely absent. We do not detect an underlying host galaxy down to deep limits. Additionally, we compare GRB 160410A to GRB 201221D, another high-z short GRB that shows absorption lines at z = 1.045 and an underlying massive host galaxy

    A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy

    Full text link
    The majority of long-duration (>2 s) gamma-ray bursts (GRBs) arise from the collapse of massive stars, with a small proportion created from the merger of compact objects. Most of these systems form via standard stellar evolution pathways. However, a fraction of GRBs may result from dynamical interactions in dense environments. These channels could also contribute substantially to the samples of compact object mergers detected as gravitational wave sources. Here we report the case of GRB 191019A, a long GRB (a duration of T 90 = 64.4 ± 4.5 s), which we pinpoint close (⪅100 pc projected) to the nucleus of an ancient (>1 Gyr old) host galaxy at z = 0.248. The lack of evidence for star formation and deep limits on any supernova emission disfavour a massive star origin. The most likely route for progenitor formation is via dynamical interactions in the dense nucleus of the host. The progenitor, in this case, could be a compact object merger. These may form in dense nuclear clusters or originate in a gaseous disc around the supermassive black hole. Identifying, to the best of our knowledge, a first example of a dynamically produced GRB demonstrates the role that such bursts may have in probing dense environments and constraining dynamical fractions in gravitational wave populations

    Fires in the deep: The luminosity distribution of early-time gamma-ray-burst afterglows in light of the Gamow Explorer sensitivity requirements

    No full text
    Context. Gamma-ray bursts (GRBs) are ideal probes of the Universe at high redshift (), pinpointing the locations of the earliest star-forming galaxies and providing bright backlights with simple featureless power-law spectra that can be used to spectrally fingerprint the intergalactic medium and host galaxy during the period of reionization. Future missions such as Gamow Explorer (hereafter Gamow) are being proposed to unlock this potential by increasing the rate of identification of high- ( > 5) GRBs in order to rapidly trigger observations from 6 to 10 m ground telescopes, the James Webb Space Telescope (JWST), and the upcoming Extremely Large Telescopes (ELTs). Aims. Gamow was proposed to the NASA 2021 Medium-Class Explorer (MIDEX) program as a fast-slewing satellite featuring a wide-field lobster-eye X-ray telescope (LEXT) to detect and localize GRBs with arcminute accuracy, and a narrow-field multi-channel photo- infrared telescope (PIRT) to measure their photometric redshifts for > 80% of the LEXT detections using the Lyman-α dropout technique. We use a large sample of observed GRB afterglows to derive the PIRT sensitivity requirement. Methods. We compiled a complete sample of GRB optical-near-infrared (optical-NIR) afterglows from 2008 to 2021, adding a total of 66 new afterglows to our earlier sample, including all known high- GRB afterglows. This sample is expanded with over 2837 unpublished data points for 40 of these GRBs. We performed full light-curve and spectral-energy-distribution analyses of these after-glows to derive their true luminosity at very early times. We compared the high- sample to the comparison sample at lower redshifts. For all the light curves, where possible, we determined the brightness at the time of the initial finding chart of Gamow, at different high redshifts and in different NIR bands. This was validated using a theoretical approach to predicting the afterglow brightness. We then followed the evolution of the luminosity to predict requirements for ground-and space-based follow-up. Finally, we discuss the potential biases between known GRB afterglow samples and those to be detected by Gamow. Results. We find that the luminosity distribution of high- GRB afterglows is comparable to those at lower redshift, and we therefore are able to use the afterglows of lower- GRBs as proxies for those at high . We find that a PIRT sensitivity of 15 μJy (21 mag AB) in a 500 s exposure simultaneously in five NIR bands within 1000 s of the GRB trigger will meet the Gamow mission requirements. Depending on the E and NIR band, we find that between 75% and 85% of all afterglows at > 5 will be recovered by Gamow at 5 detection significance, allowing the determination of a robust photo-. As a check for possible observational biases and selection effects, we compared the results with those obtained through population-synthesis models, and find them to be consistent. Conclusions. Gamow and other high- GRB missions will be capable of using a relatively modest 0.3 m onboard NIR photo- telescope to rapidly identify and report high- GRBs for further follow-up by larger facilities, opening a new window onto the era of reionization and the high-redshift Universe

    Fires in the deep: The luminosity distribution of early-time gamma-ray-burst afterglows in light of the Gamow Explorer sensitivity requirements

    No full text
    Context. Gamma-ray bursts (GRBs) are ideal probes of the Universe at high redshift (ɀ), pinpointing the locations of the earliest star-forming galaxies and providing bright backlights with simple featureless power-law spectra that can be used to spectrally fingerprint the intergalactic medium and host galaxy during the period of reionization. Future missions such as Gamow Explorer (hereafter Gamow) are being proposed to unlock this potential by increasing the rate of identification of high-ɀ (ɀ > 5) GRBs in order to rapidly trigger observations from 6 to 10 m ground telescopes, the James Webb Space Telescope (JWST), and the upcoming Extremely Large Telescopes (ELTs). Aims. Gamow was proposed to the NASA 2021 Medium-Class Explorer (MIDEX) program as a fast-slewing satellite featuring a wide-field lobster-eye X-ray telescope (LEXT) to detect and localize GRBs with arcminute accuracy, and a narrow-field multi-channel photo-ɀ infrared telescope (PIRT) to measure their photometric redshifts for > 80% of the LEXT detections using the Lyman-α dropout technique. We use a large sample of observed GRB afterglows to derive the PIRT sensitivity requirement. Methods. We compiled a complete sample of GRB optical–near-infrared (optical-NIR) afterglows from 2008 to 2021, adding a total of 66 new afterglows to our earlier sample, including all known high-ɀ GRB afterglows. This sample is expanded with over 2837 unpublished data points for 40 of these GRBs. We performed full light-curve and spectral-energy-distribution analyses of these after-glows to derive their true luminosity at very early times. We compared the high-ɀ sample to the comparison sample at lower redshifts. For all the light curves, where possible, we determined the brightness at the time of the initial finding chart of Gamow, at different high redshifts and in different NIR bands. This was validated using a theoretical approach to predicting the afterglow brightness. We then followed the evolution of the luminosity to predict requirements for ground- and space-based follow-up. Finally, we discuss the potential biases between known GRB afterglow samples and those to be detected by Gamow. Results. We find that the luminosity distribution of high-ɀ GRB afterglows is comparable to those at lower redshift, and we therefore are able to use the afterglows of lower-ɀ GRBs as proxies for those at high ɀ. We find that a PIRT sensitivity of 15 µJy (21 mag AB) in a 500 s exposure simultaneously in five NIR bands within 1000 s of the GRB trigger will meet the Gamow mission requirements. Depending on the ɀ and NIR band, we find that between 75% and 85% of all afterglows at ɀ > 5 will be recovered by Gamow at 5σ detection significance, allowing the determination of a robust photo-ɀ. As a check for possible observational biases and selection effects, we compared the results with those obtained through population-synthesis models, and find them to be consistent. Conclusions. Gamow and other high-ɀ GRB missions will be capable of using a relatively modest 0.3 m onboard NIR photo-ɀ telescope to rapidly identify and report high-ɀ GRBs for further follow-up by larger facilities, opening a new window onto the era of reionization and the high-redshift Universe.</p

    Electroanalysis of antioxidants in pharmaceutical dosage forms: state-of-the-art and perspectives

    No full text
    corecore