525 research outputs found
Single-photon-level optical storage in a solid-state spin-wave memory
A long-lived quantum memory is a firm requirement for implementing a quantum
repeater scheme. Recent progress in solid-state rare-earth-ion-doped systems
justifies their status as very strong candidates for such systems. Nonetheless
an optical memory based on spin-wave storage at the single-photon-level has not
been shown in such a system to date, which is crucial for achieving the long
storage times required for quantum repeaters. In this letter we show that it is
possible to execute a complete atomic frequency comb (AFC) scheme, including
spin-wave storage, with weak coherent pulses of photons
per pulse. We discuss in detail the experimental steps required to obtain this
result and demonstrate the coherence of a stored time-bin pulse. We show a
noise level of photons per mode during storage, this
relatively low-noise level paves the way for future quantum optics experiments
using spin-waves in rare-earth-doped crystals
Heralded quantum entanglement between two crystals
Quantum networks require the crucial ability to entangle quantum nodes. A
prominent example is the quantum repeater which allows overcoming the distance
barrier of direct transmission of single photons, provided remote quantum
memories can be entangled in a heralded fashion. Here we report the observation
of heralded entanglement between two ensembles of rare-earth-ions doped into
separate crystals. A heralded single photon is sent through a 50/50
beamsplitter, creating a single-photon entangled state delocalized between two
spatial modes. The quantum state of each mode is subsequently mapped onto a
crystal, leading to an entangled state consisting of a single collective
excitation delocalized between two crystals. This entanglement is revealed by
mapping it back to optical modes and by estimating the concurrence of the
retrieved light state. Our results highlight the potential of rare-earth-ions
doped crystals for entangled quantum nodes and bring quantum networks based on
solid-state resources one step closer.Comment: 10 pages, 5 figure
An untapped potential for imaging of peripheral osteomyelitis in paediatrics using [ <sup>18</sup> F]FDG PET/CT —the inference from a juvenile porcine model
Abstract Purpose To examine parameters affecting the detection of osteomyelitis (OM) by [18F]FDG PET/CT and to reduce tracer activity in a pig model. Background [18F]FDG PET/CT is recommended for the diagnosis of OM in the axial skeleton of adults. In children, OM has a tendency to become chronic or recurrent, especially in low-income countries. Early diagnosis and initiation of therapy are therefore essential. We have previously demonstrated that [18F]FDG PET/CT is promising in juvenile Staphylococcus aureus (S. aureus) OM of peripheral bones in a pig model, not failing even small lesions. When using imaging in children, radiation exposure should be balanced against fast diagnostics in the individual case. Methods Twenty juvenile pigs were inoculated with S. aureus. One week after inoculation, the pigs were [18F]FDG PET/CT scanned. PET list-mode acquired data of a subgroup were retrospectively processed in order to simulate and examine the image quality obtainable with an injected activity of 132 MBq, 44 MBq, 13.2 MBq, and 4.4 MBq, respectively. Results All lesions were detected by [18F]FDG PET and CT. Some lesions were very small (0.01 cm3), and others were larger (4.18 cm3). SUVmax was higher when sequesters (p = 0.023) and fistulas were formed (p < 0.0001). The simulated data demonstrated that it was possible to reduce the activity to 4.4 MBq without compromising image quality in pigs. Conclusions [18F]FDG PET/CT localized even small OM lesions in peripheral bones. It was possible to reduce the injected activity considerably without compromising image quality, impacting the applicability of PET/CT in peripheral OM in children
Temporal multimode storage of entangled photon pairs
Multiplexed quantum memories capable of storing and processing entangled
photons are essential for the development of quantum networks. In this context,
we demonstrate the simultaneous storage and retrieval of two entangled photons
inside a solid-state quantum memory and measure a temporal multimode capacity
of ten modes. This is achieved by producing two polarization entangled pairs
from parametric down conversion and mapping one photon of each pair onto a
rare-earth-ion doped (REID) crystal using the atomic frequency comb (AFC)
protocol. We develop a concept of indirect entanglement witnesses, which can be
used as Schmidt number witness, and we use it to experimentally certify the
presence of more than one entangled pair retrieved from the quantum memory. Our
work puts forward REID-AFC as a platform compatible with temporal multiplexing
of several entangled photon pairs along with a new entanglement certification
method useful for the characterisation of multiplexed quantum memories
Highly multimode memory in a crystal
We experimentally demonstrate the storage of 1060 temporal modes onto a
thulium-doped crystal using an atomic frequency comb (AFC). The comb covers
0.93 GHz defining the storage bandwidth. As compared to previous AFC
preparation methods (pulse sequences i.e. amplitude modulation), we only use
frequency modulation to produce the desired optical pumping spectrum. To ensure
an accurate spectrally selective optical pumping, the frequency modulated laser
is self-locked on the atomic comb. Our approach is general and should be
applicable to a wide range of rare-earth doped material in the context of
multimode quantum memory
Towards high-speed optical quantum memories
Quantum memories, capable of controllably storing and releasing a photon, are
a crucial component for quantum computers and quantum communications. So far,
quantum memories have operated with bandwidths that limit data rates to MHz.
Here we report the coherent storage and retrieval of sub-nanosecond low
intensity light pulses with spectral bandwidths exceeding 1 GHz in cesium
vapor. The novel memory interaction takes place via a far off-resonant
two-photon transition in which the memory bandwidth is dynamically generated by
a strong control field. This allows for an increase in data rates by a factor
of almost 1000 compared to existing quantum memories. The memory works with a
total efficiency of 15% and its coherence is demonstrated by directly
interfering the stored and retrieved pulses. Coherence times in hot atomic
vapors are on the order of microsecond - the expected storage time limit for
this memory.Comment: 13 pages, 5 figure
Generic flow profiles induced by a beating cilium
We describe a multipole expansion for the low Reynolds number fluid flows
generated by a localized source embedded in a plane with a no-slip boundary
condition. It contains 3 independent terms that fall quadratically with the
distance and 6 terms that fall with the third power. Within this framework we
discuss the flows induced by a beating cilium described in different ways: a
small particle circling on an elliptical trajectory, a thin rod and a general
ciliary beating pattern. We identify the flow modes present based on the
symmetry properties of the ciliary beat.Comment: 12 pages, 6 figures, to appear in EPJ
Photonic quantum state transfer between a cold atomic gas and a crystal
Interfacing fundamentally different quantum systems is key to build future
hybrid quantum networks. Such heterogeneous networks offer superior
capabilities compared to their homogeneous counterparts as they merge
individual advantages of disparate quantum nodes in a single network
architecture. However, only very few investigations on optical
hybrid-interconnections have been carried out due to the high fundamental and
technological challenges, which involve e.g. wavelength and bandwidth matching
of the interfacing photons. Here we report the first optical quantum
interconnection between two disparate matter quantum systems with photon
storage capabilities. We show that a quantum state can be faithfully
transferred between a cold atomic ensemble and a rare-earth doped crystal via a
single photon at telecommunication wavelength, using cascaded quantum frequency
conversion. We first demonstrate that quantum correlations between a photon and
a single collective spin excitation in the cold atomic ensemble can be
transferred onto the solid-state system. We also show that single-photon
time-bin qubits generated in the cold atomic ensemble can be converted, stored
and retrieved from the crystal with a conditional qubit fidelity of more than
. Our results open prospects to optically connect quantum nodes with
different capabilities and represent an important step towards the realization
of large-scale hybrid quantum networks
Storage of hyperentanglement in a solid-state quantum memory
Two photons can simultaneously share entanglement between several degrees of
freedom such as polarization, energy-time, spatial mode and orbital angular
momentum. This resource is known as hyperentanglement, and it has been shown to
be an important tool for optical quantum information processing. Here we
demonstrate the quantum storage and retrieval of photonic hyperentanglement in
a solid-state quantum memory. A pair of photons entangled in polarization and
energy-time is generated such that one photon is stored in the quantum memory,
while the other photon has a telecommunication wavelength suitable for
transmission in optical fibre. We measured violations of a
Clauser-Horne-Shimony-Holt (CHSH) Bell inequality for each degree of freedom,
independently of the other one, which proves the successful storage and
retrieval of the two bits of entanglement shared by the photons. Our scheme is
compatible with long-distance quantum communication in optical fibre, and is in
particular suitable for linear-optical entanglement purification for quantum
repeaters
- …