5 research outputs found

    Synthesis of biodiesel via pre-blending of feedstocks: an optimization by the polynomial curve fitting method

    No full text
    Use of abundant indigenous energy crops for biofuel production contributes to enhance the economy and reduce the dependence on fossil fuels. This article aims to shed light on two energy crops available in Pakistan; castor (Ricinus communis L.) and cottonseed (Gossypium hirsutum L.). Although castor has excellent oil content (54%), its high viscosity is not acceptable. Therefore, pre-blending with cottonseed oil was proposed. Physical and chemical properties of crude oils, pure biodiesels and binary blends besides fatty acid composition and degree of unsaturation were analyzed. Biodiesels were checked for quality parameters within limits of American Society for Testing Materials (ASTM) and European Standards. Improvement in kinematic viscosity and density of castor biodiesel were noticed following this concept. Moreover, the developed empirical formula indicated that an optimized blending ratio of 93.86% cottonseed oil and 6.14% castor oil accomplished biodiesel yield of 91.12%, kinematic viscosity of 6 mm(2)/s and cetane number of 48.79, respectively, which all satisfy ASTM D6751. This technique also indicated that pre-blending can raise the ester content of castor biodiesel. In conclusion, it is recommended to adopt the concept of pre-blending to improve the quality of biodiesel and thus the engine and emission performance in compression ignition engines

    Synthesis of Biodiesel via Pre-blending of feedstocks: An Optimization through Polynomial Curve Fitting Method

    No full text
    Use of abundant indigenous energy crops for biofuel production contributes to enhance the economy and reduce the dependence on fossil fuels. This article aims to shed light on two energy crops available in Pakistan; castor (Ricinus communis L.) and cottonseed (Gossypium hirsutum L.). Although castor has excellent oil content (54%), its high viscosity is not acceptable. Therefore, preblending with cottonseed oil was proposed. Physical and chemical properties of crude oils, pure biodiesels and binary blends besides fatty acid composition and degree of unsaturation were analyzed. Biodiesels were checked for quality parameters within limits of American Society for Testing Materials (ASTM) and European Standards. Improvement in kinematic viscosity and density of castor biodiesel were noticed following this concept. Moreover, the developed empirical formula indicated that an optimized blending ratio of 93.86% cottonseed oil and 6.14% castor oil accomplished biodiesel yield of 91.12%, kinematic viscosity of 6mm2/s and cetane number of 48.79, respectively, which all satisfy ASTM D6751. This technique also indicated that pre-blending can raise the ester content of castor biodiesel. In conclusion, it is recommended to adopt the concept of pre-blending to improve the quality of biodiesel and thus the engine and emission performance in compression ignition engines</p

    Effect of storage at elevated temperature on the quality and stability of different almond oils: a comprehensive study

    Get PDF
    This study aimed to investigate the chemical changes and oxidative stability of almond oil varieties (Australian, American, and Iranian) during storage at 60 °C for 21 d. The physicochemical properties of oil were analyzed at various time intervals to determine its stability. The peroxide value, free fatty acid, p-anisidine, TOTOX, fatty acid composition, and effect on functional groups were evaluated to assess the quality of the almond oil during storage. The results showed a significant increase in PV and FFA, p-AV, totox of the almond oil during storage, indicating that oxidative degradation had occurred. During the oxidation process, some changes were observed in the following spectral regions: 3,700–3,150, 3,010–2,999, 1,800–1,600, and 1,200–900 cm−1. Whereas, the fatty acid composition of the almond oil remained relatively stable during storage, except for a small variation in oleic acid. Comparatively, American and Iranian almond oils showed better stability than the Australian almond variety. The findings of this study provide important insights into the oxidative stability of different almond varieties during storage and can aid in the development of strategies to prevent or mitigate oxidation in almond oil. The findings of this study could have significant implications for the food, cosmetics, and pharmaceutical industry, particularly in the formulation and production of products that use almond oil as an ingredient

    Recent advances in Bio-mass by electrochemically strategies generated hydrogen gas production: Environmentally sustainable technologies innovation

    No full text
    The potential of green hydrogen as in transitioning to a free pollution energy infrastructure. Green hydrogen gas is produced using renewable energy sources, typically through the process of electrolysis, and is considered environment friendly because it does not emit carbon dioxide when produced. While solar water redox reaction using photochemical and electrochemical methods is an elegant way to harvest green hydrogen production, it can be challenging to make this process economically competitive, especially for low-cost products like hydrogen. To address this challenge, the proposes a solution, which is to produce hydrogen during the photoelectrochemical process. In this demonstration of the (photo)electrochemically generated hydrogen (H2) for the homogeneous and hydrogenation. The coupled process offers greater stability compared to direct electrochemical hydrogenation and it provides more flexibility in controlling the chemical reactions involved. Overpotential refers to the extra energy required to drive a reaction and coupling the processes can help minimize this overpotential. An overall ∼58 conversion of the produced hydrogen is confirmed for this process, indicating the efficiency of the approach. Additionally, a techno-economic assessment of the proa strategy to make green hydrogen production economically competitive by co-producing value-added chemicals, using ascorbic acid. This approach enhances the economic feasibility of green hydrogen production but also adds value to the process by producing valuable chemical products. © 2023 Elsevier Lt
    corecore