223 research outputs found

    Myosin II is not required for Drosophila tracheal branch elongation and cell intercalation

    Get PDF
    The Drosophila tracheal system consists of an interconnected network of monolayered epithelial tubes that ensures oxygen transport in the larval and adult body. During tracheal dorsal branch (DB) development, individual DBs elongate as a cluster of cells, led by tip cells at the front and trailing cells in the rear. Branch elongation is accompanied by extensive cell intercalation and cell lengthening of the trailing stalk cells. Although cell intercalation is governed by Myosin II (MyoII)-dependent forces during tissue elongation in the Drosophila embryo that lead to germ-band extension, it remained unclear whether MyoII plays a similar active role during tracheal branch elongation and intercalation. Here, we have used a nanobody-based approach to selectively knock down MyoII in tracheal cells. Our data show that, despite the depletion of MyoII function, tip cell migration and stalk cell intercalation (SCI) proceed at a normal rate. This confirms a model in which DB elongation and SCI in the trachea occur as a consequence of tip cell migration, which produces the necessary forces for the branching process

    Effects of the Protein Kinase Inhibitor PKC412 on Gene Expression and Link to Physiological Effects in Zebrafish Danio rerio Eleuthero-Embryos

    Get PDF
    To identify molecular effects of the antineoplastic agent protein kinase C inhibitor 412 (PKC412) (midostaurin), we applied gene expression profiling in zebrafish using whole-genome microarrays. Behavioral, developmental, and physiological effects were investigated in order to analyze for correlations between altered gene expression profiles with effects on development and physiology. Zebrafish blastula-stage embryos were exposed for 6 days postfertilization to nominal levels of 2 and 40 ÎĽg/l PKC412. Among the 259 and 511 altered transcripts at both concentrations, respectively, the expressions of genes involved in the circadian rhythm were further investigated. Alteration of swimming behavior was not observed. Pathways of interest affected by PKC412 were angiogenesis, apoptosis, DNA damage response, and response to oxidative stress. Angiogenesis was analyzed in double-transgenic zebrafish embryos Tg(fli1a:EGFP)y1;Tg(gata1:dsRed)sd2; no major defects were induced by PKC412 treatment at both concentrations. Apoptosis occurred in olfactory placodes of embryos exposed to 40 ÎĽg/l, and DNA damage was induced at both PKC412 concentrations. However, there were no significant effects on reactive oxygen species formation. This study leads to the conclusion that PKC412-induced alterations of gene transcripts are partly paralleled by physiological effects at high, but not at low PKC412 concentrations expected to be of environmental relevanc

    No apparent role for the Wari insulator in transcriptional regulation of the endogenous white gene of Drosophila melanogaster

    Get PDF
    Chromatin insulators have been proposed to play an important role in chromosome organization and local regulatory interactions. In; Drosophila; , one of these insulators is known as Wari. It is located immediately downstream of the 3' end of the; white; transcription unit. Wari has been proposed to interact with the; white; promoter region, thereby facilitating recycling of the RNA polymerase machinery. We have tested this model by deleting the Wari insulator at the endogenous; white; locus and could not detect a significant effect on eye pigmentation

    Spatio-temporally separated cortical flows and spindle geometry establish physical asymmetry in fly neural stem cells

    Get PDF
    Asymmetric cell division, creating sibling cells with distinct developmental potentials, can be manifested in sibling cell size asymmetry. This form of physical asymmetry occurs in several metazoan cells, but the underlying mechanisms and function are incompletely understood. Here we use Drosophila neural stem cells to elucidate the mechanisms involved in physical asymmetry establishment. We show that Myosin relocalizes to the cleavage furrow via two distinct cortical Myosin flows: at anaphase onset, a polarity induced, basally directed Myosin flow clears Myosin from the apical cortex. Subsequently, mitotic spindle cues establish a Myosin gradient at the lateral neuroblast cortex, necessary to trigger an apically directed flow, removing Actomyosin from the basal cortex. On the basis of the data presented here, we propose that spatiotemporally controlled Myosin flows in conjunction with spindle positioning and spindle asymmetry are key determinants for correct cleavage furrow placement and cortical expansion, thereby establishing physical asymmetry

    The Drosophila melanogaster straw locus is allelic to laccase2.

    Get PDF

    The Hrs/Stam Complex Acts as a Positive and Negative Regulator of RTK Signaling during Drosophila Development

    Get PDF
    BACKGROUND: Endocytosis is a key regulatory step of diverse signalling pathways, including receptor tyrosine kinase (RTK) signalling. Hrs and Stam constitute the ESCRT-0 complex that controls the initial selection of ubiquitinated proteins, which will subsequently be degraded in lysosomes. It has been well established ex vivo and during Drosophila embryogenesis that Hrs promotes EGFR down regulation. We have recently isolated the first mutations of stam in flies and shown that Stam is required for air sac morphogenesis, a larval respiratory structure whose formation critically depends on finely tuned levels of FGFR activity. This suggest that Stam, putatively within the ESCRT-0 complex, modulates FGF signalling, a possibility that has not been examined in Drosophila yet. PRINCIPAL FINDINGS: Here, we assessed the role of the Hrs/Stam complex in the regulation of signalling activity during Drosophila development. We show that stam and hrs are required for efficient FGFR signalling in the tracheal system, both during cell migration in the air sac primordium and during the formation of fine cytoplasmic extensions in terminal cells. We find that stam and hrs mutant cells display altered FGFR/Btl localisation, likely contributing to impaired signalling levels. Electron microscopy analyses indicate that endosome maturation is impaired at distinct steps by hrs and stam mutations. These somewhat unexpected results prompted us to further explore the function of stam and hrs in EGFR signalling. We show that while stam and hrs together downregulate EGFR signalling in the embryo, they are required for full activation of EGFR signalling during wing development. CONCLUSIONS/SIGNIFICANCE: Our study shows that the ESCRT-0 complex differentially regulates RTK signalling, either positively or negatively depending on tissues and developmental stages, further highlighting the importance of endocytosis in modulating signalling pathways during development

    Genetic analysis of rab7 mutants in zebrafish

    Get PDF
    Vascular network formation requires the fusion of newly formed blood vessels and the emergence of a patent lumen between the newly established connections so that blood flow can start. Lumen formation has been shown to depend on the late endosomal/lysosomal pathway in various organs of animal tubular systems. Here, we identified a late endosomal/lysosomal vesicular fraction (Rab7/Lamp2) in early zebrafish angiogenic sprouts, which appears to contribute to apical membrane growth during lumen formation. To study the effect of the late endocytic pathway on vascular development, we generated mutant alleles for all three rab7 genes in zebrafish ( rab7a, rab7ba, rab7bb ). All rab7 genes are expressed in wild-type zebrafish and we did not detect any compensatory effects by the other rab7 isoforms in single knockout mutants, which were all viable. Only the triple mutant was lethal suggesting some functional redundancy. However, the different rab7 isoforms fulfil also at least partially independent functions because eggs laid from mothers lacking two rab7 ( rab7a and/or rab7bb ). showed reduced survival and contained enlarged yolk granules, suggesting maternal contribution of these two rab7 . Finally, we observed minor effects on lumen formation in embryos which still express one copy of rab7 . Our results support the notion that the late endocytic/lysosomal compartment contributes to lumen expansion
    • …
    corecore