73 research outputs found
Design of atomic clock cavity based on a loop-gap geometry and modified boundary conditions
In this study, we investigate a concept that can be used to improve the magnetic field homogeneity in a microwave cavity applied in a novel, high-performance atomic frequency standard. We show that by modifying the boundary conditions in the case of a loop-gap geometry, a good improvement of the field homogeneity can be obtained. Such a design demonstrates high potential to improve the frequency stability; it is compact and hence suitable for a future generation of compact, high-precision frequency standards based on vapor cells and a pulsed optical pumping (POP) regime (POP atomic clocks)
Study of Field Misalignment in a Cavity Used for Atomic Clock Applications
In vapor cell atomic clocks the atom-field interaction is typically obtained inside a microwave cavity resonator in which the microwave driving field together with a static magnetic field and an optical field are applied to excite the atoms. These fields are generally well-controlled, mutually aligned to a common quantization axis. Since the exploited atomic transition is sensitive to any potential axis misalignment, the performance of the clock can also be affected. We study the effect of such misalignment for the case of a cylindrical cavity used in vapor-cell atomic clocks, taking into account the misalignments of the optical detection field and the static magnetic field required for the atomic transition. Both the geometry of the cavity and the factors contributing to losses can play role in the degradation of the signal and are taken into account in the misalignment problem discussed
Imaging Microwave and DC Magnetic Fields in a Vapor-Cell Rb Atomic Clock
We report on the experimental measurement of the dc and microwave magnetic field distributions inside a recently developed compact magnetron-type microwave cavity mounted inside the physics package of a high-performance vapor-cell atomic frequency standard. Images of the microwave field distribution with sub-100- ÎĽm lateral spatial resolution are obtained by pulsed optical-microwave Rabi measurements, using the Rb atoms inside the cell as field probes and detecting with a CCD camera. Asymmetries observed in the microwave field images can be attributed to the precise practical realization of the cavity and the Rb vapor cell. Similar spatially resolved images of the dc magnetic field distribution are obtained by Ramsey-type measurements. The T2 relaxation time in the Rb vapor cell is found to be position dependent and correlates with the gradient of the dc magnetic field. The presented method is highly useful for experimental in situ characterization of dc magnetic fields and resonant microwave structures, for atomic clocks or other atom-based sensors and instrumentation
- …