23 research outputs found

    Why is solar cycle 24 an inefficient producer of high-energy particle events?

    Full text link
    The aim of the study is to investigate the reason for the low productivity of high-energy SEPs in the present solar cycle. We employ scaling laws derived from diffusive shock acceleration theory and simulation studies including proton-generated upstream Alfv\'en waves to find out how the changes observed in the long-term average properties of the erupting and ambient coronal and/or solar wind plasma would affect the ability of shocks to accelerate particles to the highest energies. Provided that self-generated turbulence dominates particle transport around coronal shocks, it is found that the most crucial factors controlling the diffusive shock acceleration process are the number density of seed particles and the plasma density of the ambient medium. Assuming that suprathermal populations provide a fraction of the particles injected to shock acceleration in the corona, we show that the lack of most energetic particle events as well as the lack of low charge-to-mass ratio ion species in the present cycle can be understood as a result of the reduction of average coronal plasma and suprathermal densities in the present cycle over the previous one

    Solar Particle Radiation Storms Forecasting and Analysis: The HESPERIA HORIZON 2020 Project and Beyond

    Get PDF
    This chapter provides a short tutorial review on particle acceleration in dynamic electromagnetic fields under scenarios relevant to the problem of particle acceleration in the solar corona and solar wind during solar eruptions. It concentrates on fundamental aspects of the acceleration process and refrains from presenting detailed modeling of the specific conditions in solar eruptive plasmas. All particle acceleration mechanisms (in the solar corona) are related to electric fields that can persist in the highly conductive plasma: either electrostatic (or potential) or inductive related to temporally variable magnetic fields through Faraday’s law. Mechanisms involving both kinds of fields are included in the tutorial.</p

    A semi-analytical foreshock model for energetic storm particle events inside 1 AU

    Get PDF
    We have constructed a semi-analytical model of the energetic-ion foreshock of a CME-driven coronal/interplanetary shock wave responsible for the acceleration of large solar energetic particle (SEP) events. The model is based on the analytical model of diffusive shock acceleration of Bell (1978), appended with a temporal dependence of the cut-off momentum of the energetic particles accelerated at the shock, derived from the theory. Parameters of the model are re-calibrated using a fully time-dependent self-consistent simulation model of the coupled particle acceleration and Alfv&eacute;n-wave generation upstream of the shock. Our results show that analytical estimates of the cut-off energy resulting from the simplified theory and frequently used in SEP modelling are overestimating the cut-off momentum at the shock by one order magnitude. We show also that the cut-off momentum observed remotely far upstream of the shock (e.g., at 1 AU) can be used to infer the properties of the foreshock and the resulting energetic storm particle (ESP) event, when the shock is still at small distances from the Sun, unaccessible to the in-situ observations. Our results can be used in ESP event modelling for future missions to the inner heliosphere, like the Solar Orbiter and Solar Probe Plus as well as in developing acceleration models for SEP events in the solar corona.</p

    A novel approach in magnetic cloud-driven Forbush decrease modeling

    Get PDF
    Interplanetary coronal mass ejections (ICMEs) are large-scale solar wind disturbances propagating from the Sun and causing a depression of the galactic-cosmic ray (GCR) intensity known as Forbush decrease (FD). IC- MEs generally contain coherent plasma structures called magnetic clouds (MCs). A unique and powerful data analysis tool allowing for the study of the quasi-3-D configuration of a MC is the Grad-Shafranov (GS) recons - truction. The aim of this work is to investigate the role played by the MC configuration in the formation of a FD. A suited full-orbit test-particle simulation has been developed in order to evaluate FD amplitude and time pro- file produced by the MC obtained with the GS reconstruction. Particle trajectories are computed starting from an isotropic flux outside the MC region. In addition, particle diffusion has been modeled by superimposing a small-angle scattering over the unperturbed charged particle motion at each time step. The model allows us to investigate the MC effect on GCR propagation and to study the energy dependence of the physical processes in - volved, as it provides an estimate of ground-based GCR counts observations at different latitudes. A comparison between model results and both space-based cosmic-ray measurements in L1 and ground-based observations suggests a major role of drifts in producing the FD and a reduced contribution of GCR particle diffusion

    Solar Particle Radiation Storms Forecasting and Analysis: The HESPERIA HORIZON 2020 Project and Beyond

    Get PDF
    The scenario and fundamentals of the physics of charged particle interplanetary transport are briefly introduced. Relevant characteristics of solar energetic particle (SEP) events and of the interplanetary magnetic field are described. Next, the motion of a charged particle and the main assumptions leading to the description of the focused and diffusive particle transport equations utilised in the next chapters are discussed. Finally, two different models are applied to interpret SEP events.</p

    A New Method to Model Magnetic Cloud-driven Forbush Decreases: The 2016 August 2 Event

    Get PDF
    Interplanetary coronal mass ejections (ICMEs), generally containing magnetic clouds (MCs), are associated with galactic-cosmic ray (GCR) intensity depressions known as Forbush decreases (FDs). An ICME was observed at L1 between 2016 August 2 at 14:00 UT and August 3 at 03:00 UT. The MC region was identified and its magnetic configuration was retrieved by using the Grad-Shafranov (GS) reconstruction. A weak FD in the GCR count-rate was observed on 2016 August 2 by a particle detector on board the European Space Agency LISA Pathfinder mission. The spacecraft orbited around L1 and the particle detector allowed us to monitor the GCR intensity at energies above 70 MeVn(-1). A 9% decrease in the cosmic-ray intensity was observed during the ICME passage. The first structure of the ICME caused a 6.4% sharp decrease, while the MC produced a 2.6% decrease. A suited full-orbit test-particle simulation was performed on the MC configuration obtained through the GS reconstruction. The FD amplitude and time profile obtained through the simulation show an excellent agreement with observations. The test-particle simulation allows us to derive the energy dependence of the MC-driven FD providing an estimate of the amplitude at different rigidities, here compared with several neutron monitor observations. This work points out the importance of the large-scale MC configuration in the interaction between GCRs and ICMEs and suggests that particle drifts have a primary role in modulating the GCR intensity within the MC under study and possibly in at least all slowly expanding ICMEs lacking a shock/sheath region

    On the Origin of Hard X-Ray Emissions from the Behind-the-limb Flare on 2014 September 1

    Get PDF
    The origin of hard X-rays and gamma-rays emitted from the solar atmosphere during occulted solar flares is still debated. The hard X-ray emissions could come from flaring loop tops rising above the limb or coronal mass ejection shock waves, two by-products of energetic solar storms. For the shock scenario to work, accelerated particles must be released on magnetic field lines rooted on the visible disk and precipitate. We present a new Monte Carlo code that computes particle acceleration at shocks propagating along large coronal magnetic loops. A first implementation of the model is carried out for the 2014 September 1 event, and the modeled electron spectra are compared with those inferred from Fermi Gamma-ray Burst Monitor (GBM) measurements. When particle diffusion processes are invoked, our model can reproduce the hard electron spectra measured by GBM nearly 10 minutes after the estimated on-disk hard X-rays appear to have ceased from the flare site

    Solar Particle Radiation Storms Forecasting and Analysis: The HESPERIA HORIZON 2020 Project and Beyond

    Get PDF
    Solar γ-ray events recently detected by the Fermi/LAT instrument at energies above 100 MeV have presented a puzzle for solar physicists as many of such events were observed lasting for many hours after the associated flare/coronal mass ejection (CME) eruption. Data analyses suggest the γ-ray emission originate from decay of pions produced mainly by interactions of high-energy protons deep in the chromosphere. Whether those protons are accelerated in the associated flare or in the CME-driven shock has been under active discussion. In this chapter, we present some modelling efforts aimed at testing the shock acceleration hypothesis. We address two γ-ray events: 2012 January 23 and 2012 May 17 and approach the problem by, first, simulating the proton acceleration at the shock and, second, simulating their transport back to the Sun.</p

    Influence of Large-scale Interplanetary Structures on the Propagation of Solar Energetic Particles: The Multispacecraft Event on 2021 October 9

    Get PDF
    An intense solar energetic particle (SEP) event was observed on 2021 October 9 by multiple spacecraft distributed near the ecliptic plane at heliocentric radial distances R ≲ 1 au and within a narrow range of heliolongitudes. A stream interaction region (SIR), sequentially observed by Parker Solar Probe (PSP) at R = 0.76 au and 48° east from Earth (ϕ = E48°), STEREO-A (at R = 0.96 au, ϕ = E39°), Solar Orbiter (SolO; at R = 0.68 au, ϕ = E15°), BepiColombo (at R = 0.33 au, ϕ = W02°), and near-Earth spacecraft, regulated the observed intensity-time profiles and the anisotropic character of the SEP event. PSP, STEREO-A, and SolO detected strong anisotropies at the onset of the SEP event, which resulted from the fact that PSP and STEREO-A were in the declining-speed region of the solar wind stream responsible for the SIR and from the passage of a steady magnetic field structure by SolO during the onset of the event. By contrast, the intensity-time profiles observed near Earth displayed a delayed onset at proton energies ≳13 MeV and an accumulation of ≲5 MeV protons between the SIR and the shock driven by the parent coronal mass ejection (CME). Even though BepiColombo, STEREO-A, and SolO were nominally connected to the same region of the Sun, the intensity-time profiles at BepiColombo resemble those observed near Earth, with the bulk of low-energy ions also confined between the SIR and the CME-driven shock. This event exemplifies the impact that intervening large-scale interplanetary structures, such as corotating SIRs, have in shaping the properties of SEP events

    EUropean Heliospheric FORecasting Information Asset 2.0

    Get PDF
    Aims: This paper presents a H2020 project aimed at developing an advanced space weather forecasting tool, combining the MagnetoHydroDynamic (MHD) solar wind and coronal mass ejection (CME) evolution modelling with solar energetic particle (SEP) transport and acceleration model(s). The EUHFORIA 2.0 project will address the geoeffectiveness of impacts and mitigation to avoid (part of the) damage, including that of extreme events, related to solar eruptions, solar wind streams, and SEPs, with particular emphasis on its application to forecast geomagnetically induced currents (GICs) and radiation on geospace. Methods: We will apply innovative methods and state-of-the-art numerical techniques to extend the recent heliospheric solar wind and CME propagation model EUHFORIA with two integrated key facilities that are crucial for improving its predictive power and reliability, namely (1) data-driven flux-rope CME models, and (2) physics-based, self-consistent SEP models for the acceleration and transport of particles along and across the magnetic field lines. This involves the novel coupling of advanced space weather models. In addition, after validating the upgraded EUHFORIA/SEP model, it will be coupled to existing models for GICs and atmospheric radiation transport models. This will result in a reliable prediction tool for radiation hazards from SEP events, affecting astronauts, passengers and crew in high-flying aircraft, and the impact of space weather events on power grid infrastructure, telecommunication, and navigation satellites. Finally, this innovative tool will be integrated into both the Virtual Space Weather Modeling Centre (VSWMC, ESA) and the space weather forecasting procedures at the ESA SSCC in Ukkel (Belgium), so that it will be available to the space weather community and effectively used for improved predictions and forecasts of the evolution of CME magnetic structures and their impact on Earth. Results: The results of the first six months of the EU H2020 project are presented here. These concern alternative coronal models, the application of adaptive mesh refinement techniques in the heliospheric part of EUHFORIA, alternative flux-rope CME models, evaluation of data-assimilation based on Karman filtering for the solar wind modelling, and a feasibility study of the integration of SEP models
    corecore