376 research outputs found
Une genre de nouvelle discrimination chromatique
Une mode comme celle des baskets rouges est un prétexte à distinguer les classes sociales. On pourrait continuer d'imaginer pour chaque groupe de femmes et d'hommes une couleur qui correspondrait au mieux à leurs aspirations et finirait par les décrire, au pied de la lettre. Pour démontrer que l'écriture inclusive devrait être aussi variée que les couleurs possibles de chaussures, ce récit distingue douze types de formulation non hétérosexiste adaptés sur mesure à autant de catégories d'individus.A trend such as the red sneakers one is a pretext to distinguish between social classes. We could keep on imagining for every group of women and men a colour matching as much as possible what they aspire to be, and at the end, which could literally describe them. To prove that gender-neutral language [or inclusive writing] should be as multifarious as the possibilities of shoes' colour, this narrative distinguish between twelve types of non-heterosexist phrasing, made to measure to so many categories of persons
Dynamics of Excited Electrons in Copper: Role of Auger Electrons
Within a theoretical model based on the Boltzmann equation, we analyze in
detail the structure of the unusual peak recently observed in the relaxation
time in Cu. In particular, we discuss the role of Auger electrons in the
electron dynamics and its dependence on the d-hole lifetime, the optical
transition matrix elements and the laser pulse duration. We find that the Auger
contribution to the distribution is very sensitive to both the d-hole lifetime
tau_h and the laser pulse duration tau_l and can be expressed as a monotonic
function of tau_l/tau_h. We have found that for a given tau_h, the Auger
contribution is significantly smaller for a short pulse duration than for a
longer one. We show that the relaxation time at the peak depends linearly on
the d-hole lifetime, but interestingly not on the amount of Auger electrons
generated. We provide a simple expression for the relaxation time of excited
electrons which shows that its shape can be understood by a phase space
argument and its amplitude is governed by the d-hole lifetime. We also find
that the height of the peak depends on both the ratio of the optical transition
matrix elements R=|M_{d \to sp}|^2/|M_{sp \to sp}|^2 and the laser pulse
duration. Assuming a reasonable value for the ratio, namely R = 2, and a d-hole
lifetime of tau_h=35 fs, we obtain for the calculated height of the peak Delta
tau_{th}=14 fs, in fair agreement with Delta tau_{exp} \approx 17 fs measured
for polycrystalline Cu.Comment: 6 pages, 6 figure
Dynamics of Excited Electrons in Copper and Ferromagnetic Transition Metals: Theory and Experiment
Both theoretical and experimental results for the dynamics of photoexcited
electrons at surfaces of Cu and the ferromagnetic transition metals Fe, Co, and
Ni are presented. A model for the dynamics of excited electrons is developed,
which is based on the Boltzmann equation and includes effects of
photoexcitation, electron-electron scattering, secondary electrons (cascade and
Auger electrons), and transport of excited carriers out of the detection
region. From this we determine the time-resolved two-photon photoemission
(TR-2PPE). Thus a direct comparison of calculated relaxation times with
experimental results by means of TR-2PPE becomes possible. The comparison
indicates that the magnitudes of the spin-averaged relaxation time \tau and of
the ratio \tau_\uparrow/\tau_\downarrow of majority and minority relaxation
times for the different ferromagnetic transition metals result not only from
density-of-states effects, but also from different Coulomb matrix elements M.
Taking M_Fe > M_Cu > M_Ni = M_Co we get reasonable agreement with experiments.Comment: 23 pages, 11 figures, added a figure and an appendix, updated
reference
The role of occupied d states in the relaxation of hot electrons in Au
We present first-principles calculations of electron-electron scattering
rates of low-energy electrons in Au. Our full band-structure calculations
indicate that a major contribution from occupied d states participating in the
screening of electron-electron interactions yields lifetimes of electrons in Au
with energies of above the Fermi level that are larger than
those of electrons in a free-electron gas by a factor of . This
prediction is in agreement with a recent experimental study of ultrafast
electron dynamics in Au(111) films (J. Cao {\it et al}, Phys. Rev. B {\bf 58},
10948 (1998)), where electron transport has been shown to play a minor role in
the measured lifetimes of hot electrons in this material.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
Epitaxial growth of thermally stable cobalt films on Au(111)
Ferromagnetic thin films play a fundamental role in spintronic applications as a source for spin polarized carriers and in fundamental studies as ferromagnetic substrates. However, it is challenging to produce such metallic films with high structural quality and chemical purity on single crystalline substrates since the diffusion barrier across the metal-metal interface is usually smaller than the thermal activation energy necessary for smooth surface morphologies. Here, we introduce epitaxial thin Co films grown on an Au(111) single crystal surface as a thermally stable ferromagnetic thin film. Our structural investigations reveal an identical growth of thin Co/Au(111) films compared to Co bulk single crystals with large monoatomic Co terraces with an average width of 500 Å, formed after thermal annealing at 575 K. Combining our results from photoemission and Auger electron spectroscopy, we provide evidence that no significant diffusion of Au into the near surface region of the Co film takes place for this temperature and that no Au capping layer is formed on top of Co films. Furthermore, we show that the electronic valence band is dominated by a strong spectral contribution from a Co 3d band and a Co derived surface resonance in the minority band. Both states lead to an overall negative spin polarization at the Fermi energy
Hole dynamics in noble metals
We present a detailed analysis of hole dynamics in noble metals (Cu and Au),
by means of first-principles many-body calculations. While holes in a
free-electron gas are known to live shorter than electrons with the same
excitation energy, our results indicate that d-holes in noble metals exhibit
longer inelastic lifetimes than excited sp-electrons, in agreement with
experiment. The density of states available for d-hole decay is larger than
that for the decay of excited electrons; however, the small overlap between d-
and sp-states below the Fermi level increases the d-hole lifetime. The impact
of d-hole dynamics on electron-hole correlation effects, which are of relevance
in the analysis of time-resolved two-photon photoemission experiments, is also
addressed.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let
OECD MCCI project final report, February 28, 2006.
Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the crust itself is expected to periodically fracture the crust and restore contact with the melt. The fractured crust will provide a pathway for water to recontact the underlying melt, thereby allowing other debris cooling mechanisms to proceed and contribute to terminating the core-concrete interaction. Thus, one of the key aims of the current program was to measure crust strength to check the hypothesis that a corium crust would not be strong enough to sustain melt/crust separation in a plant accident. The second important issue concerns long-term, two-dimensional concrete ablation by a prototypic core oxide melt. As discussed by Foit, the existing reactor material database for dry cavity conditions is solely one-dimensional. Although the MACE Scoping Test was carried out with a two-dimensional concrete cavity, the interaction was flooded soon after ablation was initiated to investigate debris coolability. Moreover, due to the scoping nature of this test, the apparatus was minimally instrumented and therefore the results are of limited value from the code validation viewpoint. Aside from the MACE program, the COTELS test series also investigated 2-D CCI under flooded cavity conditions. However, the input power density for these tests was quite high relative to the prototypic case. Finally, the BETA test series provided valuable data on 2-D core concrete interaction under dry cavity conditions, but these tests focused on investigating the interaction of the metallic (steel) phase with concrete. Due to these limitations, there is significant uncertainty in the partitioning of energy dissipated for the ablation of concrete in the lateral and axial directions under dry cavity conditions for the case of a core oxide melt. Accurate knowledge of this 'power split' is important in the evaluation of the consequences of an ex-vessel severe accident; e.g., lateral erosion can undermine containment structures, while axial erosion can penetrate the basemat, leading to ground contamination and/or possible containment bypass. As a result of this uncertainty, there are still substantial differences among computer codes in the prediction of 2-D cavity erosion behavior under both wet and dry cavity conditions. Thus, a second key aim of the current program was to provide the necessary data to help resolve these modeling differences. In light of the above issues, the OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program was initiated at Argonne National Laboratory. The project conducted reactor materials experiments and associated analysis to achieve the following technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focused on providing both confirmatory evidence and test data for the coolability mechanisms identified in previous integral effects tests, and (2) address remaining uncertainties related to long-term 2-D core-concrete interaction under both wet and dry cavity conditions. Data from the various tests conducted as part of the program is used to develop and validate models and codes that eventually form the basis for extrapolating the experimental findings to plant conditions. Achievement of these technical objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs of future plants. The project completed a total of eleven reactor material tests to investigate melt coolability and 2-D core-concrete interaction mechanisms under both wet and dry cavity conditions
Transglutaminase activity in the eye: cross-linking in epithelia and connective tissue structures
TGase 2 appears to be an important cross-linker and thus stabilizer of ocular connective tissue. In particular, the zonular fibers are a major target for TGase 2. This is of relevance in hereditary microfibrillopathies such as Marfan syndrome, which exhibits distinct ocular manifestations such as elongated bulbus, retinal detachment, and subluxation of the lens. Purified or recombinant TGase might be of therapeutic use in the future
OECD/MCCI 2-D Core Concrete Interaction (CCI) tests : final report February 28, 2006.
Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the EPRI-sponsored Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the crust itself is expected to periodically fracture the crust and restore contact with the melt. Although crust fracturing does not ensure that coolability will be achieved, it nonetheless provides a pathway for water to recontact the underlying melt, thereby allowing other debris cooling mechanisms to proceed. A related task of the current program, which is not addressed in this particular report, is to measure crust strength to check the hypothesis that a corium crust would not be strong enough to sustain melt/crust separation in a plant accident. The second important issue concerns long-term, two-dimensional concrete ablation by a prototypic core oxide melt. As discussed by Foit the existing reactor material database for dry cavity conditions is solely one-dimensional. Although the MACE Scoping Test was carried out with a two-dimensional concrete cavity, the interaction was flooded soon after ablation was initiated to investigate debris coolability. Moreover, due to the scoping nature of this test, the apparatus was minimally instrumented and therefore the results are of limited value from the code validation viewpoint. Aside from the MACE program, the COTELS test series also investigated 2-D CCI under flooded cavity conditions. However, the input power density for these tests was quite high relative to the prototypic case. Finally, the BETA test series provided valuable data on 2-D core concrete interaction under dry cavity conditions, but these tests focused on investigating the interaction of the metallic (steel) phase with concrete. Due to these limitations, there is significant uncertainty in the partition of energy dissipated for the ablation of concrete in the lateral and axial directions under dry cavity conditions for the case of a core oxide melt. Accurate knowledge of this 'power split' is important in the evaluation of the consequences of an ex-vessel severe accident; e.g., lateral erosion can undermine containment structures, while axial erosion can penetrate the basemat, leading to ground contamination and/or possible containment bypass. As a result of this uncertainty, there are still substantial differences among computer codes in the prediction of 2-D cavity erosion behavior under both wet and dry cavity conditions. In light of the above issues, the OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program was initiated at Argonne National Laboratory. The project conducted reactor materials experiments and associated analysis to achieve the following technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focused on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term 2-D core-concrete interactions under both wet and dry cavity conditions. Data from the various tests conducted as part of the program are being used to develop and validate models and codes that are used to extrapolate the experimental findings to plant conditions. Achievement of these technical objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs of future plants. The project completed three large scale CCI experiments to address the second technical objective defined above
- …