139 research outputs found

    Bend it Like Beckham

    Get PDF
    This is a review of Bend it Like Beckham (2002)

    Novel point mutation in the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor in a case of severe congenital neutropenia hyporesponsive to G-CSF treatment

    Get PDF
    Severe congenital neutropenia (SCN) is a heterogeneous condition characterized by a drastic reduction in circulating neutrophils and a maturation arrest of myeloid progenitor cells in the bone marrow. Usually this condition can be successfully treated with granulocyte colony-stimulating factor (G-CSF). Here we describe the identification of a novel point mutation in the extracellular domain of the G-CSF receptor (G-CSF-R) in an SCN patient who failed to respond to G-CSF treatment. When this mutant G-CSF-R was expressed in myeloid cells, it was defective in both proliferation and survival signaling. This correlated with diminished activation of the receptor complex as determined by signal transducer and activator of transcription (STAT) activation, although activation of STAT5 was more affected than STAT3. Interestingly, the mutant receptor showed normal affinity for ligand, but a reduced number of ligand binding sites compared with the wild-type receptor. This suggests that the mutation in the extracellular domain affects ligand-receptor complex formation with severe consequences for intracellular signal transduction. Together these data add to our understanding of the mechanisms of cytokine receptor signaling, emphasize the role of GCSFR mutations in the etiology of SCN, and implicate such mutations in G-CSF hyporesponsiveness

    Multiple signals mediate proliferation, differentiation, and survival from the granulocyte colony-stimulating factor receptor in myeloid 32D cells

    Get PDF
    Granulocyte colony-stimulating factor (G-CSF) regulates neutrophil production through activation of its cognate receptor, the G-CSF-R. Previous studies with deletion mutants have shown that the membrane-proximal cytoplasmic domain of the receptor is sufficient for mitogenic signaling, whereas the membrane-distal domain is required for differentiation signaling. However, the function of the four cytoplasmic tyrosines of the G-CSF-R in the control of proliferation, differentiation, and survival has remained unclear. Here we investigated the role of these tyrosines by expressing a tyrosine 'null' mutant and single tyrosine 'add back' mutants in maturation-competent myeloid 32D cells. Clones expressing the null mutant showed only minimal proliferation and differentiation, with survival also reduced at low G-CSF concentrations. Analysis of clones expressing the add-back mutants revealed that multiple tyrosines contribute to proliferation, differentiation, and survival signals from the G-CSF-R. Analysis of signaling pathways downstream of these tyrosines suggested a positive role for STAT3 activation in both differentiation and survival signaling, whereas SHP-2, Grb2 and Shc appear important for proliferation signaling. In addition, we show that a tyrosine- independent 'differentiation domain' in the membrane-distal region of the G- CSF-R appears necessary but not sufficient for mediating neutrophilic differentiation in these cells

    Audio-biofeedback versus the scale method for improving partial weight-bearing adherence in healthy older adults: a randomised trial.

    Get PDF
    PURPOSE To investigate how audio-biofeedback during the instruction of partial weight-bearing affected adherence, compared to traditional methods, in older adults; and to investigate the influence of individual characteristics. METHODS The primary outcome measure of this randomised controlled trial was the amount of load, measured as the ground reaction force, on the partial weight-bearing leg. The secondary outcome was the influence of individual characteristics on the amount of load. Included were healthy volunteers 60 years of age or older without gait impairment. Participants were randomly allocated to one of two groups; blinding was not possible. Partial weight-bearing of 20 kg was trained using crutches with audio-biofeedback (intervention group) or a bathroom scale (control group). The degree of weight-bearing was measured during six activities with sensor insoles. A mean load between 15 and 25 kg was defined as adherent. RESULTS There was no statistically significant difference in weight-bearing between the groups for all activities measured. For the sit-stand-sit activity, weight-bearing was within the adherence range of 15-25 kg (audio-biofeedback: 21.7 ± 16.6 kg; scale: 22.6 ± 13 kg). For standing, loading was below the lower threshold (10 ± 7 vs. 10 ± 10 kg). Weight-bearing was above the upper threshold for both groups for: walking (26 ± 11 vs. 34 ± 16), step-up (29 ± 18 vs. 34 ± 20 kg) and step-down (28 ± 15 vs. 35 ± 19 kg). Lower level of cognitive function, older age, and higher body mass index were correlated with overloading. CONCLUSION Audio-biofeedback delivered no statistically significant benefit over the scale method. Lower cognitive function, older age and higher body mass index were associated with overloading. TRIAL REGISTRATION Not applicable due not being a clinical trial and due to the cross-sectional design (one measurement point, no health intervention, no change in health of a person)

    Assessing lower extremity loading during activities of daily living using continuous-scale physical functional performance 10 and wireless sensor insoles: a comparative study between younger and older adults.

    Get PDF
    PURPOSE This study aims to investigate the lower extremity loading during activities of daily living (ADLs) using the Continuous Scale of Physical Functional Performance (CS-PFP 10) test and wireless sensor insoles in healthy volunteers. METHODS In this study, 42 participants were recruited, consisting of 21 healthy older adults (mean age 69.6 ± 4.6 years) and 21 younger healthy adults (mean age 23.6 ± 1.8 years). The performance of the subjects during ADLs was assessed using the CS-PFP 10 test, which comprised 10 tasks. The lower extremity loading was measured using wireless sensor insoles (OpenGo, Moticon, Munich, Germany) during the CS-PFP 10 test, which enabled the measurement of ground reaction forces, including the mean and maximum total forces during the stance phase, expressed in units of body weight (BW). RESULTS The total CS-PFP 10 score was significantly lower in older participants compared to the younger group (mean total score of 57.1 ± 9.0 compared to 78.2 ± 5.4, respectively). No significant differences in the mean total forces were found between older and young participants. The highest maximum total forces were observed during the tasks 'endurance walk' (young: 1.97 ± 0.34 BW, old: 1.70 ± 0.43 BW) and 'climbing stairs' (young: 1.65 ± 0.36 BW, old: 1.52 ± 0.28 BW). Only in the endurance walk, older participants showed a significantly higher maximum total force (p < 0.001). CONCLUSION The use of wireless sensor insoles in a laboratory setting can effectively measure the load on the lower extremities during ADLs. These findings could offer valuable insights for developing tailored recommendations for patients with partial weight-bearing restrictions

    RNAi Screening Uncovers a Synthetic Sick Interaction between CtIP and the BARD1 Tumor Suppressor

    Get PDF
    Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors

    A stapled peptide mimetic of the CtIP tetramerization motif interferes with double-strand break repair and replication fork protection

    Get PDF
    Cancer cells display high levels of DNA damage and replication stress, vulnerabilities that could be exploited by drugs targeting DNA repair proteins. Human CtIP promotes homology-mediated repair of DNA double-strand breaks (DSBs) and protects stalled replication forks from nucleolytic degradation, thus representing an attractive candidate for targeted cancer therapy. Here, we establish a peptide mimetic of the CtIP tetramerization motif that inhibits CtIP activity. The hydrocarbon-stapled peptide encompassing amino acid residues 18 to 28 of CtIP (SP1828^{18–28}) stably binds to CtIP tetramers in vitro and facilitates their aggregation into higher-order structures. Efficient intracellular uptake of SP1828^{18–28} abrogates CtIP localization to damaged chromatin, impairs DSB repair, and triggers extensive fork degradation. Moreover, prolonged SP1828^{18–28} treatment causes hypersensitivity to DNA-damaging agents and selectively reduces the viability of BRCA1-mutated cancer cell lines. Together, our data provide a basis for the future development of CtIP-targeting compounds with the potential to treat patients with cancer.ISSN:2375-254

    RNAi Screening Uncovers a Synthetic Sick Interaction between CtIP and the BARD1 Tumor Suppressor

    Get PDF
    Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors.Peer reviewe

    Saving America

    No full text

    Turning Points

    No full text
    corecore