957 research outputs found

    Quasiparticle spectrum in a nearly antiferromagnetic Fermi liquid: shadow and flat bands

    Full text link
    We consider a two-dimensional Fermi liquid in the vicinity of a spin-density-wave transition to a phase with commensurate antiferromagnetic long-range order. We assume that near the transition, the Fermi surface is large and crosses the magnetic Brillouin zone boundary. We show that under these conditions, the self-energy corrections to the dynamical spin susceptibility, χ(q,ω)\chi (q, \omega), and to the quasiparticle spectral function function, A(k,ω)A(k, \omega), are divergent near the transition. We identify and sum the series of most singular diagrams, and obtain a solution for χ(q,ω)\chi(q, \omega) and an approximate solution for A(k,ω)A(k, \omega). We show that (i) A(k)A(k) at a given, small ω\omega has an extra peak at k=kF+πk = k_F + \pi (`shadow band'), and (ii) the dispersion near the crossing points is much flatter than for free electrons. The relevance of these results to recent photoemission experiments in YBCOYBCO and Bi2212Bi2212 systems is discussed.Comment: a sign and amplitude of the vertex renormalization and few typos are correcte

    Study of ARPES data and d-wave superconductivity using electronic models in two dimensions

    Full text link
    We review the results of an extensive investigation of photoemission spectral weight using electronic models for the high-Tc superconductors. Here we show that some recently reported unusual features of the cuprates namely the presence of (i) flat bands, (ii) small quasiparticle bandwidths, and (iii) antiferromagnetically induced weight, have all a natural explanation within the context of holes moving in the presence of robust antiferromagnetic correlations. Introducing interactions among the hole carriers, a model is constructed which has dx2y2{\rm d_{x^2 - y^2}} superconductivity, an optimal doping of 15%\sim 15\% (caused by the presence of a large density of states at the top of the valence band), and a critical temperature 100K\sim 100K.Comment: 11 pages Z-compressed postscript, to appear in the Proceedings to the Stanford Conference on Spectroscopies in Novel superconductor

    Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems

    Get PDF
    The PgIB oligosaccharyltransferase (OTase) of Campylobacter jejuni can be functionally expressed in Escherichia coli, and its relaxed oligosaccharide substrate specificity allows the transfer of different glycans from the lipid carrier undecaprenyl pyrophosphate to an acceptor protein. To investigate the substrate specificity of PgIB, we tested the transfer of a set of lipid-linked polysaccharides in E. coli and Salmonella enterica serovar Typhimurium. A hexose linked to the C-6 of the monosaccharide at the reducing end did not inhibit the transfer of the O antigen to the acceptor protein. However, PgIB required an acetamido group at the C-2. A model for the mechanism of PgIB involving this functional group was proposed. Previous experiments have shown that eukaryotic OTases have the same requirement, suggesting that eukaryotic and prokaryotic OTases catalyze the transfer of oligosaccharides by a conserved mechanism. Moreover, we demonstrated the functional transfer of the C. jejuni glycosylation system into S. enterica. The elucidation of the mechanism of action and the substrate specificity of PgIB represents the foundation for engineering glycoproteins that will have an impact on biotechnology

    Implications of Charge Ordering for Single-Particle Properties of High-Tc Superconductors

    Full text link
    The consequences of disordered charge stripes and antiphase spin domains for the properties of the high-temperature superconductors are studied. We focus on angle-resolved photoemission spectroscopy and optical conductivity, and show that the many unusual features of the experimentally observed spectra can be understood naturally in this way. This interpretation of the data, when combined with evidence from neutron scattering and NMR, suggests that disordered and fluctuating stripe phases are a common feature of high-temperature superconductors.Comment: 4 pages, figures by fax or mai

    Bi-layer splitting in overdoped high TcT_{c} cuprates

    Full text link
    Recent angle-resolved photoemission data for overdoped Bi2212 are explained. Of the peak-dip-hump structure, the peak corresponds the q=0\vec q =0 component of a hole condensate which appears at TcT_c. The fluctuating part of this same condensate produces the hump. The bilayer splitting is large enough to produce a bonding hole and an electron antibonding quasiparticle Fermi surface. Smaller bilayer splittings observed in some experiments reflect the interaction of the peak structure with quasiparticle states near, but not at, the Fermi surface.Comment: 4 pages with 2 figures - published versio

    Electronic excitations in Bi2_2Sr2_2CaCu2_2O8_8 : Fermi surface, dispersion, and absence of bilayer splitting

    Get PDF
    From a detailed study, including polarization dependence, of the normal state angle-resolved photoemission spectra for Bi2_2Sr2_2CaCu2_2O8_8, we find only one CuO2_2 band related feature. All other spectral features can be ascribed either to umklapps from the superlattice or to ``shadow bands''. Even though the dispersion of the peaks looks like band theory, the lineshape is anomalously broad and no evidence is found for bilayer splitting. We argue that the ``dip feature'' in the spectrum below TcT_c arises not from bilayer splitting, but rather from many body effects.Comment: 4 pages, revtex, 3 uuencoded postscript figure

    ARPES study of Pb doped Bi_2Sr_2CaCu_2O_8 - a new Fermi surface picture

    Full text link
    High resolution angle resolved photoemission data from Pb doped Bi_2Sr_2CaCu_2O_8 (Bi2212) with suppressed superstructure is presented. Improved resolution and very high momentum space sampling at various photon energies reveal the presence of two Fermi surface pieces. One has the hole-like topology, while the other one has its van Hove singularity very close to (pi,0), its topology at some photon energies resembles the electron-like piece. This result provides a unifying picture of the Fermi surface in the Bi2212 compound and reconciles the conflicting reports.Comment: 4 pages, 4 figure

    Surprises in the doping dependence of the Fermi surface in Bi(Pb)-2212

    Full text link
    A detailed and systematic ARPES investigation of the doping-dependence of the normal state Fermi surface (FS) of modulation-free (Pb,Bi)-2212 is presented. The FS does not change in topology away from hole-like at any stage. The data reveal, in addition, a number of surprises. Firstly the FS area does not follow the usual curve describing Tc vs x for the hole doped cuprates, but is down-shifted in doping by ca. 0.05 holes per Cu site, indicating either the break-down of Luttinger's theorem or the consequences of a significant bi-layer splitting of the FS. Secondly, the strong k-dependence of the FS width is shown to be doping independent. Finally, the relative strength of the shadow FS has a doping dependence mirroring that of Tc.Comment: 5 pages, 4 figures (revtex

    Hole Doping Evolution of the Quasiparticle Band in Models of Strongly Correlated Electrons for the High-T_c Cuprates

    Full text link
    Quantum Monte Carlo (QMC) and Maximum Entropy (ME) techniques are used to study the spectral function A(p,ω)A({\bf p},\omega) of the one band Hubbard model in strong coupling including a next-nearest-neighbor electronic hopping with amplitude t/t=0.35t'/t= -0.35. These values of parameters are chosen to improve the comparison of the Hubbard model with angle-resolved photoemission (ARPES) data for Sr2CuO2Cl2Sr_2 Cu O_2 Cl_2. A narrow quasiparticle (q.p.) band is observed in the QMC analysis at the temperature of the simulation T=t/3T=t/3, both at and away from half-filling. Such a narrow band produces a large accumulation of weight in the density of states at the top of the valence band. As the electronic density decreases further away from half-filling, the chemical potential travels through this energy window with a large number of states, and by 0.70 \sim 0.70 it has crossed it entirely. The region near momentum (0,π)(0,\pi) and (π,0)(\pi,0) in the spectral function is more sensitive to doping than momenta along the diagonal from (0,0)(0,0) to (π,π)(\pi,\pi). The evolution with hole density of the quasiparticle dispersion contains some of the features observed in recent ARPES data in the underdoped regime. For sufficiently large hole densities the ``flat'' bands at (π,0)(\pi,0) cross the Fermi energy, a prediction that could be tested with ARPES techniques applied to overdoped cuprates. The population of the q.p. band introduces a {\it hidden} density in the system which produces interesting consequences when the quasiparticles are assumed to interact through antiferromagnetic fluctuations and studied with the BCS gap equation formalism. In particular, a region of extended s-wave is found to compete with d-wave in the overdoped regime, i.e. when the chemical potential has almost entirely crossed the q.p.Comment: 14 pages, Revtex, with 13 embedded ps figures, submitted to Phys. Rev. B., minor modifications in the text and in figures 1b, 2b, 3b, 4b, and 6

    Pb0.4Bi1.6Sr2Ca1Cu2O8+xPb_{0.4}Bi_{1.6}Sr_{2}Ca_{1}Cu_{2}O_{8+x} and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties

    Full text link
    Pb0.4Bi1.6Sr2CaCu2O8+xPb_{0.4}Bi_{1.6}Sr_2CaCu_2O_{8+x} (Bi(Pb)Bi(Pb)-2212) single crystal samples were studied using transmission electron microscopy (TEM), abab-plane (ρab\rho_{ab}) and cc-axis (ρc\rho_c) resistivity, and high resolution angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that the modulation in the bb-axis for Pb(0.4)Pb(0.4)-doped Bi(Pb)Bi(Pb)-2212 is dominantly of PbPb-type that is not sensitive to the oxygen content of the system, and the system clearly shows a structure of orthorhombic symmetry. Oxygen annealed samples exhibit a much lower cc-axis resistivity and a resistivity minimum at 8013080-130K. He-annealed samples exhibit a much higher cc-axis resistivity and dρc/dT<0d\rho_c/dT<0 behavior below 300K. The Fermi surface (FS) of oxygen annealed Bi(Pb)Bi(Pb)-2212 mapped out by ARUPS has a pocket in the FS around the Mˉ\bar{M} point and exhibits orthorhombic symmetry. There are flat, parallel sections of the FS, about 60\% of the maximum possible along kx=kyk_x = k_y, and about 30\% along kx=kyk_x = - k_y. The wavevectors connecting the flat sections are about 0.72(π,π)0.72(\pi, \pi) along kx=kyk_x = k_y, and about 0.80(π,π)0.80(\pi, \pi) along kx=kyk_x = - k_y, rather than (π,π)(\pi,\pi). The symmetry of the near-Fermi-energy dispersing states in the normal state changes between oxygen-annealed and He-annealed samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon request. Submitted to Phys. Rev. B
    corecore