2,108 research outputs found

    Hot Spots on the Fermi Surface of Bi2212: Stripes versus Superstructure

    Full text link
    In a recent paper Saini et al. have reported evidence for a pseudogap around (pi,0) at room temperature in the optimally doped superconductor Bi2212. This result is in contradiction with previous ARPES measurements. Furthermore they observed at certain points on the Fermi surface hot spots of high spectral intensity which they relate to the existence of stripes in the CuO planes. They also claim to have identified a new electronic band along Gamma-M1 whose one dimensional character provides further evidence for stripes. We demonstrate in this Comment that all the measured features can be simply understood by correctly considering the superstructure (umklapp) and shadow bands which occur in Bi2212.Comment: 1 page, revtex, 1 encapsulated postscript figure (color

    Exciton condensation driving the periodic lattice distortion of 1T-TiSe2

    Get PDF
    We address the lattice instability of 1T-TiSe2 in the framework of the exciton condensate phase. We show that, at low temperature, condensed excitons influence the lattice through electron-phonon interaction. It is found that at zero temperature, in the exciton condensate phase of 1T-TiSe2, this exciton condensate exerts a force on the lattice generating ionic displacements comparable in amplitude to what is measured in experiment. This is thus the first quantitative estimation of the amplitude of the periodic lattice distortion observed in 1T-TiSe2 as a consequence of the exciton condensate phase.Comment: 5 pages, 3 figures and 1 tabl

    Spontaneous exciton condensation in 1T-TiSe2: a BCS-like approach

    Full text link
    Recently strong evidence has been found in favor of a BCS-like condensation of excitons in 1\textit{T}-TiSe2_2. Theoretical photoemission intensity maps have been generated by the spectral function calculated within the excitonic condensate phase model and set against experimental angle-resolved photoemission spectroscopy data. Here, the calculations in the framework of this model are presented in detail. They represent an extension of the original excitonic insulator phase model of J\'erome \textit{et al.} [Phys. Rev. {\bf 158}, 462 (1967)] to three dimensional and anisotropic band dispersions. A detailed analysis of its properties and further comparison with experiment are also discussedComment: Submitted to PRB, 11 pages, 7 figure

    High resolution measurement of FGM thin films using picosecond ultrasonics

    Get PDF
    AbstractFunctionally Graded Materials (FGMs) are materials with elastic properties λ, Ό and density ρ depending on spatial coordinates. When between two homogeneous materials the transition layer thickness is of the same order of magnitude as the mechanical wave length, the wave scattering behavior at the interface becomes frequency dependent. The effect is of growing importance for micro- and nanostructures since the relative size of the interface layers is generally larger than in macroscopic structures. In this work a linear material grading is achieved with physical vapor deposition by magnetron sputtering. The used materials are aluminum (Al) and tantalum (Ta) due to their strong variation in acoustic impedance (bulk force reflection coefficient 0.6) and their good intermixing properties. In the sample investigated here the material transition layer thickness amounts to 60nm. With Rutherford Backscattering Spectroscopy (RBS) measurements and electron microscopy (SEM/TEM) the material properties of the sample are characterized. Mechanical waves in the specimen are excited and detected using a pump probe laser acoustic setup. The frequency dependent wave propagation in FGM is demonstrated by investigating the spectral response in theory and experiments. The entire experimental setup is modeled using a finite difference algorithm for better interpretation of the measurements. The frequency dependent wave propagation in FGM is analyzed to characterize the interface and finds applications in high frequency filters, semiconductor manufacturing or thermal barrier layers

    The Coherence Field in the Field Perturbation Theory of Superconductivity

    Full text link
    We re-examine the Nambu-Gorkov perturbation theory of superconductivity on the basis of the Bogoliubov-Valatin quasi-particles. We show that two different fields (and two additional analogous fields) may be constructed, and that the Nambu field is only one of them. For the other field- the coherence field- the interaction is given by means of two interaction vertices that are based on the Pauli matrices tau1 and tau3. Consequently, the Hartree integral for the off-diagonal pairing self-energy may be finite, and in some cases large. We interpret the results in terms of conventional superconductivity, and also discuss briefly possible implications to HTSC

    A eubacterial origin for the human tRNA nucleotidyltransferase?

    Get PDF
    tRNA CCA-termini are generated and maintained by tRNA nucleotidyltransferases. Together with poly(A) polymerases and other enzymes they belong to the nucleotidyltransferase superfamily. However, sequence alignments within this family do not allow to distinguish between CCA-adding enzymes and poly(A) polymerases. Furthermore, due to the lack of sequence information about animal CCA-adding enzymes, identification of corresponding animal genes was not possible so far. Therefore, we looked for the human homolog using the baker's yeast tRNA nucleotidyltransferase as a query sequence in a BLAST search. This revealed that the human gene transcript CGI-47, (\#AF151805) deposited in GenBank is likely to encode such an enzyme. To identify the nature of this protein, the cDNA of the transcript was cloned and the recombinant protein biochemically characterized, indicating that CGI-47 encodes a bona fide CCA-adding enzyme and not a poly(A) polymerase. This confirmed animal CCA-adding enzyme allowed us to identify putative homologs from other animals. Calculation of a neighbor-joining tree, using an alignment of several CCA-adding enzymes, revealed that the animal enzymes resemble more eubacterial ones than eukaryotic plant and fungal tRNA nucleotidyltransferases, suggesting that the animal nuclear cca genes might have been derived from the endosymbiotic progenitor of mitochondria and are therefore of eubacterial origin

    Reversible control of the electronic density of states at the Fermi level of Ca3Co4O9+ÎŽ misfit-layered oxide single crystals through O+/H+ plasma exposure

    Get PDF
    Misfit-layered Ca3Co4O9 crystals were grown and characterized via XRD, SEM, and photo-emission spectroscopy (PES). The evolution of the intensity at the Fermi level (E F) with varying oxygen content was studied by PES. Oxygen species were successfully introduced and removed through O+ and H+ microwave-plasma (2.45GHz, 2-5mbar) treatments, respectively. A 5min O+ plasma exposure was observed to result into a drastic enhancement in the E F intensity, demonstrating the influence of oxygen content to the charge carrier population in layered cobalt-oxide material
    • 

    corecore