15 research outputs found

    Fine-Mapping Resolves Eae23 into Two QTLs and Implicates ZEB1 as a Candidate Gene Regulating Experimental Neuroinflammation in Rat

    Get PDF
    This study was supported by grants from the Swedish Research Council, The Wadsworth Foundation, Söderbergs Foundation, Petrus and Augusta Hedlunds Foundation, Bibbi and Niels Jensens Foundation, Montel Williams Foundation, Åke-Wibergs Stiftelse, the Swedish Foundation for Neurologically Disabled and the EU 6TH Framework EURATools (LSHG-CT-2005-019015) and Neuropromise (LSHM-CT-2005-018637)

    Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis

    Get PDF
    BACKGROUND: Due to limited access to brain tissue, the precise mechanisms underlying neuro-axonal dysfunction in neurological disorders such as multiple sclerosis (MS) are largely unknown. In that context, profiling DNA methylation, which is a stable and cell type-specific regulatory epigenetic mark of genome activity, offers a unique opportunity to characterize the molecular mechanisms underpinning brain pathology in situ. We examined DNA methylation patterns of neuronal nuclei isolated from post-mortem brain tissue to infer processes that occur in neurons of MS patients. RESULTS: We isolated subcortical neuronal nuclei from post-mortem white matter tissue of MS patients and non-neurological controls using flow cytometry. We examined bulk DNA methylation changes (total n = 29) and further disentangled true DNA methylation (5mC) from neuron-specific DNA hydroxymethylation (5hmC) (n = 17), using Illumina Infinium 450K arrays. We performed neuronal sub-type deconvolution using glutamate and GABA methylation profiles to further reduce neuronal sample heterogeneity. In total, we identified 2811 and 1534 significant (genome-wide adjusted P value < 0.05) differentially methylated and hydroxymethylated positions between MS patients and controls. We found striking hypo-5mC and hyper-5hmC changes occurring mainly within gene bodies, which correlated with reduced transcriptional activity, assessed using published RNAseq data from bulk brain tissue of MS patients and controls. Pathway analyses of the two cohorts implicated dysregulation of genes involved in axonal guidance and synaptic plasticity, with meta-analysis confirming CREB signalling as the most highly enriched pathway underlying these processes. We functionally investigated DNA methylation changes of CREB signalling-related genes by immunohistofluoresence of phosphorylated CREB in neurons from brain sections of a subcohort of MS patients and controls (n = 15). Notably, DNA methylation changes associated with a reduction of CREB activity in white matter neurons of MS patients compared to controls. CONCLUSIONS: Our data demonstrate that investigating 5mC and 5hmC modifications separately allows the discovery of a substantial fraction of changes occurring in neurons, which can escape traditional bisulfite-based DNA methylation analysis. Collectively, our findings indicate that neurons of MS patients acquire sustained hypo-5mC and hyper-5hmC, which may impair CREB-mediated neuro-axonal integrity, in turn relating to clinical symptoms

    Plasma Biomarkers Discriminate Clinical Forms of Multiple Sclerosis

    Get PDF
    International audienceMultiple sclerosis, the most common cause of neurological disability in young population after trauma, represents a significant public health burden. Current challenges associated with management of multiple sclerosis (MS) patients stem from the lack of biomarkers that might enable stratification of the different clinical forms of MS and thus prompt treatment for those patients with progressive MS, for whom there is currently no therapy available. In the present work we analyzed a set of thirty different plasma cytokines, chemokines and growth factors present in circulation of 129 MS patients with different clinical forms (relapsing remitting, secondary progressive and primary progressive MS) and 53 healthy controls, across two independent cohorts. The set of plasma analytes was quantified with Luminex xMAP technology and their predictive power regarding clinical outcome was evaluated both individually using ROC curves and in combination using logistic regression analysis. Our results from two independent cohorts of MS patients demonstrate that the divergent clinical and histology-based MS forms are associated with distinct profiles of circulating plasma protein biomarkers, with distinct signatures being composed of chemokines and growth/angiogenic factors. With this work, we propose that an evaluation of a set of 4 circulating biomarkers (HGF, Eotaxin/CCL11, EGF and MIP-1β/CCL4) in MS patients might serve as an effective tool in the diagnosis and more personalized therapeutic targeting of MS patients
    corecore