14 research outputs found

    Optimal tests following sequential experiments

    Full text link
    Recent years have seen tremendous advances in the theory and application of sequential experiments. While these experiments are not always designed with hypothesis testing in mind, researchers may still be interested in performing tests after the experiment is completed. The purpose of this paper is to aid in the development of optimal tests for sequential experiments by analyzing their asymptotic properties. Our key finding is that the asymptotic power function of any test can be matched by a test in a limit experiment where a Gaussian process is observed for each treatment, and inference is made for the drifts of these processes. This result has important implications, including a powerful sufficiency result: any candidate test only needs to rely on a fixed set of statistics, regardless of the type of sequential experiment. These statistics are the number of times each treatment has been sampled by the end of the experiment, along with final value of the score (for parametric models) or efficient influence function (for non-parametric models) process for each treatment. We then characterize asymptotically optimal tests under various restrictions such as unbiasedness, \alpha-spending constraints etc. Finally, we apply our our results to three key classes of sequential experiments: costly sampling, group sequential trials, and bandit experiments, and show how optimal inference can be conducted in these scenarios

    How to sample and when to stop sampling: The generalized Wald problem and minimax policies

    Full text link
    Acquiring information is expensive. Experimenters need to carefully choose how many units of each treatment to sample and when to stop sampling. The aim of this paper is to develop techniques for incorporating the cost of information into experimental design. In particular, we study sequential experiments where sampling is costly and a decision-maker aims to determine the best treatment for full scale implementation by (1) adaptively allocating units to two possible treatments, and (2) stopping the experiment when the expected welfare (inclusive of sampling costs) from implementing the chosen treatment is maximized. Working under the diffusion limit, we describe the optimal policies under the minimax regret criterion. Under small cost asymptotics, the same policies are also optimal under parametric and non-parametric distributions of outcomes. The minimax optimal sampling rule is just the Neyman allocation; it is independent of sampling costs and does not adapt to previous outcomes. The decision-maker stops sampling when the average difference between the treatment outcomes, multiplied by the number of observations collected until that point, exceeds a specific threshold. We also suggest methods for inference on the treatment effects using stopping times and discuss their optimality

    Risk and optimal policies in bandit experiments

    Full text link
    This paper provides a decision theoretic analysis of bandit experiments. The bandit setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define a suitable notion of asymptotic Bayes risk for bandit settings. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit setting with a PDE which can be efficiently solved using sparse matrix routines. We derive near-optimal policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives

    Dynamically optimal treatment allocation using Reinforcement Learning

    Full text link
    Devising guidance on how to assign individuals to treatment is an important goal in empirical research. In practice, individuals often arrive sequentially, and the planner faces various constraints such as limited budget/capacity, or borrowing constraints, or the need to place people in a queue. For instance, a governmental body may receive a budget outlay at the beginning of a year, and it may need to decide how best to allocate resources within the year to individuals who arrive sequentially. In this and other examples involving inter-temporal trade-offs, previous work on devising optimal policy rules in a static context is either not applicable, or sub-optimal. Here we show how one can use offline observational data to estimate an optimal policy rule that maximizes expected welfare in this dynamic context. We allow the class of policy rules to be restricted for legal, ethical or incentive compatibility reasons. The problem is equivalent to one of optimal control under a constrained policy class, and we exploit recent developments in Reinforcement Learning (RL) to propose an algorithm to solve this. The algorithm is easily implementable with speedups achieved through multiple RL agents learning in parallel processes. We also characterize the statistical regret from using our estimated policy rule by casting the evolution of the value function under each policy in a Partial Differential Equation (PDE) form and using the theory of viscosity solutions to PDEs. We find that the policy regret decays at a n−1/2n^{-1/2} rate in most examples; this is the same rate as in the static case.Comment: 67 page

    Nonparametric instrumental regression with errors in variables

    Get PDF
    This paper considers nonparametric instrumental variable regression when the endogenous variable is contaminated with classical measurement error. Existing methods are inconsistent in the presence of measurement error. We propose a wavelet deconvolution estimator for the structural function that modifies the generalized Fourier coefficients of the orthogonal series estimator to take into account the measurement error. We establish the convergence rates of our estimator for the cases of mildly/severely ill-posed models and ordinary/super smooth measurement errors. We characterize how the presence of measurement error slows down the convergence rates of the estimator. We also study the case where the measurement error density is unknown and needs to be estimated, and show that the estimation error of the measurement error density is negligible under mild conditions as far as the measurement error density is symmetric

    Empirical likelihood for random sets

    Get PDF
    We extend the method of empirical likelihood to cover hypotheses involving the Aumann expectation of random sets. By exploiting the properties of random sets, we convert the testing problem into one involving a continuum of moment restrictions for which we propose two inferential procedures. The first, which we term marked empirical likelihood, corresponds to constructing a non-parametric likelihood for each moment restriction and assessing the resulting process. The second, termed sieve empirical likelihood, corresponds to constructing a likelihood for a vector of moments with growing dimension. We derive the asymptotic distributions under the null and sequence of local alternatives for both types of tests and prove their consistency. The applicability of these inferential procedures is demonstrated in the context of two examples on the mean of interval observations and best linear predictors for interval outcomes

    Essays on inference in econometric models

    Get PDF
    This thesis contains three essays on inference in econometric models. Chapter 1 considers the question of bootstrap inference for Propensity Score Matching. Propensity Score Matching, where the propensity scores are estimated in a first step, is widely used for estimating treatment effects. In this context, the naive bootstrap is invalid (Abadie and Imbens, 2008). This chapter proposes a novel bootstrap procedure for this context, and demonstrates its consistency. Simulations and real data examples demonstrate the superior performance of the proposed method relative to using the asymptotic distribution for inference, especially when the degree of overlap in propensity scores is poor. General versions of the procedure can also be applied to other causal effect estimators such as inverse probability weighting and propensity score subclassification, potentially leading to higher order refinements for inference in such contexts. Chapter 2 tackles the question of inference in incomplete econometric models. In many economic and statistical applications, the observed data take the form of sets rather than points. Examples include bracket data in survey analysis, tumor growth and rock grain images in morphology analysis, and noisy measurements on the support function of a convex set in medical imaging and robotic vision. Additionally, nonparametric bounds on treatment effects under imperfect compliance can be expressed by means of random sets. This chapter develops a concept of nonparametric likelihood for random sets and its mean, known as the Aumann expectation, and proposes general inference methods by adapting the theory of empirical likelihood. Chapter 3 considers inference on the cumulative distribution function (CDF) in the classical measurement error model. It proposes both asymptotic and bootstrap based uniform confidence bands for the estimator of the CDF under measurement error. The proposed techniques can also be used to obtain confidence bands for quantiles, and perform various CDF-based tests such as goodness-offit tests for parametric models of densities, two sample homogeneity tests, and tests for stochastic dominance; all for the first time under measurement error

    Empirical likelihood for random sets

    Get PDF
    In many statistical applications, the observed data take the form of sets rather than points. Examples include bracket data in survey analysis, tumor growth and rock grain images in morphology analysis, and noisy measurements on the support function of a convex set in medical imaging and robotic vision. Additionally, in studies of treatment effects, researchers often wish to conduct inference on nonparametric bounds for the effects which can be expressed by means of random sets. This article develops the concept of nonparametric likelihood for random sets and its mean, known as the Aumann expectation, and proposes general inference methods by adapting the theory of empirical likelihood. Several examples, such as regression with bracket income data, Boolean models for tumor growth, bound analysis on treatment effects, and image analysis via support functions, illustrate the usefulness of the proposed methods. Supplementary materials for this article are available online

    Inference on distribution functions under measurement error

    Get PDF
    This paper is concerned with inference on the cumulative distribution function (cdf) FX∗ in the classical measurement error model X = X∗ + ε. We consider the case where the density of the measurement error ε is unknown and estimated by repeated measurements, and show validity of a bootstrap approximation for the distribution of the deviation in the sup-norm between the deconvolution cdf estimator and FX∗. We allow the density of ε to be ordinary or super smooth. We also provide several theoretical results on the bootstrap and asymptotic Gumbel approximations of the sup-norm deviation for the case where the density of ε is known. Our approximation results are applicable to various contexts, such as confidence bands for FX∗ and its quantiles, and for performing various cdf-based tests such as goodness-of-fit tests for parametric models of X∗, two sample homogeneity tests, and tests for stochastic dominance. Simulation and real data examples illustrate satisfactory performance of the proposed methods
    corecore