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Abstract. We extend the method of empirical likelihood to cover hypotheses involving the

Aumann expectation of random sets. By exploiting the properties of random sets, we convert

the testing problem into one involving a continuum of moment restrictions for which we propose

two inferential procedures. The first, which we term marked empirical likelihood, corresponds to

constructing a non-parametric likelihood for each moment restriction and assessing the resulting

process. The second, termed sieve empirical likelihood, corresponds to constructing a likelihood

for a vector of moments with growing dimension. We derive the asymptotic distributions under

the null and sequence of local alternatives for both types of tests and prove their consistency.

The applicability of these inferential procedures is demonstrated in the context of two examples

on the mean of interval observations and best linear predictors for interval outcomes.

1. Introduction

Since the seminal paper by Owen (1988), a number of papers have sought to extend the
method of empirical likelihood to cover various hypothesis testing problems. This is because
empirical likelihood is a non-parametric likelihood method, thus inheriting the latter’s good
power properties while at the same being flexible and able to incorporate side information (Owen,
2001). A detailed overview of the many empirical likelihood based methods may be found in
Owen (2001) and Chen and van Keilegom (2009).

The aim of this paper is to extend the method of empirical likelihood to cover hypotheses
involving random sets. Informally, an object is said to be a random set if it has set-valued
realizations. We refer to Molchanov (2005) for a comprehensive survey on the theory and appli-
cations of random sets. Recently, applications of random set methods have been discussed in the
context of partial identification and inference in econometrics. Partial identification concerns the
situation wherein a parameter of interest in not point identified but only as a set. This could
be because of limitations in the data, e.g. interval or categorical data, or because the theoreti-
cal models do not provide enough restrictions to identify a unique value for the parameter, e.g.
game theoretic models with multiple equilibria. Beresteanu and Molinari (2008) were the first to
employ random set methods to obtain estimation and inference for partially identified models.
Other applications of random set theory in the context of partial inference include Bontemps,
Magnac and Maurin (2012), Chandrasekhar et al. (2012), Chernozukhov, Kocatulum and Menzel
(2012), Kaido (2012), Kaido and Santos (2014). Molchanov and Molinari (2014) provide a review
of the recent developments in the applications and use of random set theory in econometrics.

In this paper we consider hypothesis tests involving the Aumann expectation (which is a
generalization of the expectation operator to random sets) of random convex and compact sets.
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By relying on the isomorphism between a convex set and its support function, we convert the
testing problem to one involving inference on the support function that implies a continuum of
moment restrictions for each direction of the support function. More generally, our procedures
can be extended to random compact sets under the additional assumption that the underlying
probability distribution is non-atomic. We propose two inferential procedures based on empirical
likelihood for testing the continuum of moment restrictions, which we term marked empirical
likelihood and sieve empirical likelihood.

The idea behind the marked empirical likelihood is to construct a non-parametric likelihood
for each direction of the support function and assess the resulting process over the domain of all
possible directions. Consistent tests are then obtained using Kolmogorov-Smirnov or Cramér-
von Mises type test statistics. Similar methods have previously been employed by Einmahl
and McKeague (2003) in the context of omnibus tests for non-parametric hypotheses and van
Keilegom, Sellero and Manteiga (2008) in the context of testing for regression. The test statistic
is shown to converge to a Gaussian process under the null and possess non-trivial power against
local alternatives converging to the null at the n−1/2 rate. Since the asymptotic distribution of the
test statistic contains unknown parameters to be estimated, we provide a bootstrap calibration
to approximate the critical values.

An alternative way to construct a likelihood function to test the continuum of moment restric-
tions is to employ a vector of moments with growing dimension. This is called the sieve empirical
likelihood method. Empirical likelihood methods under a growing number of parameters have
previously been considered in Hjort, McKeague and van Keilegom (2008) and Chen, Peng and
Qin (2009) for example. In this context, we generalize the results of Hjort, McKeague and van
Keilegom (2008) by allowing for arbitrary growth rates on the eigenvalues of the covariance ma-
trix. In particular, the best condition on the growth rate (when the random sets are almost
surely bounded) is shown to be k5φ−6

k /n→ 0, where k is the dimension of the vector of moments
and φk is the smallest eigenvalue of the variance matrix. Under this assumption, and in line
with the findings of most of the literature on growing number of moments, we find that the test
statistic converges to the standard normal distribution. We also show that the test statistic has
non-trivial power against local alternatives converging to the null at the rate k1/4n−1/2 in all
directions and faster than n−1/2 rate in some directions.

We further generalize both inferential procedures to allow for the presence of finite dimensional
nuisance parameters. In particular, we find that in the presence of nuisance parameters, the
sieve empirical likelihood is no longer first-order efficient in the sense that it is not internally
studentized. We thus propose to add a penalty term in the dual representation of the empirical
likelihood objective function to restore the efficiency. The penalty is akin to a one-step Newton-
Raphson approximation that affects the variance term.

The applicability of our testing procedures is demonstrated using two examples on the mean
of interval observations (reviewed in Manski (2003) and treated via random set methods in
Beresteanu and Molinari (2008)) and best linear predictors for interval outcomes (Beresteanu
and Molinari (2008), Bontemps, Magnac and Maurin (2012), Chandrasekhar et al. (2012)).
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The structure of the paper is as follows. In Section 2 we introduce the notation and basic
setup and propose two inferential procedures for testing hypotheses involving the mean (using
the Aumann expectation) of random sets. We then illustrate these procedures with an example
of the mean of interval observations. In Section 3 we extend these methods by including finite
dimensional nuisance parameters which have to be estimated. As an example, we discuss the
problem of inference on the set of best linear predictors with interval outcomes. All proofs are
contained in the Appendix.

2. Prototype

We first introduce the notation and basic setup. The basic concepts discussed here follow from
Molchanov (2005). Let (Ω,B, µ) be a probability space and Kd be the collection of all non-empty
closed subsets of the d-dimensional Euclidean space Rd. Let ‖·‖ and 〈·, ·〉 be the Euclidean norm
and inner product, respectively. The mapping X : Ω 7→ Kd is said to be a set-valued random
variable (SVRV) if it holds X−1(C) = {ω ∈ Ω : X(ω) ∩ C 6= ∅} ∈ B for each closed subset C of
Rd. As a concept for the mathematical expectation of the SVRV X, we introduce the Aumann
expectation E[X], that is

E[X] =

{ˆ
Ω
xdµ : x ∈ {x(ω) ∈ X(ω) a.s. and

ˆ
Ω
‖x‖ dµ <∞}

}
.

Note that in this definition, x(ω) or x is a random variable and X(ω) or X is a SVRV. Hereafter,
E[·] denotes the Aumann expectation of a SVRV and E[·] denotes the expectation of a random
variable. Let ‖A‖H = sup{‖a‖ : a ∈ A} denote the Hausdorff norm of a set A. The SVRV X is
said to be integrably bounded if E[‖X‖H ] <∞.

In this paper we consider SVRVs whose realizations are compact and convex sets. More
generally, under the additional assumption of non-atomic probability measure µ, the results in
this paper can be extended to random compact sets by taking the convex hull operation, denoted
by co(X). This follows from the result that E[X] = E[co(X)] for a compact SVRV X if µ is
non-atomic (Molchanov, 2005, Theorem 1.17 on p. 154). In particular, we note also that co(X)

is a compact and convex valued SVRV if X is a compact SVRV (by Molchanov (2005, Theorem
2.2.5 on p. 37) and the fact that the convex hull of a compact set is also compact). Hence for
the remainder of this paper we restrict attention to compact and convex valued SVRVs with the
implicit assumption that similar results also hold for compact sets when µ is non-atomic.

Let Kd
kc be the collection of all non-empty compact and convex sets of Rd. The collection Kd

kc

is endowed with the Hausdorff metric

dH(A,B) = max{sup
a∈A

inf
b∈B
‖a− b‖ , sup

b∈B
inf
a∈A
‖b− a‖},

for compact and convex sets A and B. It can be shown that the mapping X : Ω 7→ Kd
kc is a

SVRV if and only if X is B(Kd
kc) measurable, where B(Kd

kc) is the Borel σ-algebra generated by
the Hausdorff metric on Kd

kc .1 Let Sd−1 be the unit sphere in Rd and s(A, p) = supx∈A 〈p, x〉

1To observe this, define the Effros σ-algebra as the smallest σ-algebra generated by {A ∈ Kd : A ∩ C 6= ∅} for C
running through the family of sets Kd. It is known (e.g., Molchanov, 2005, p. 2) that the definition of SVRV is
equivalent to X : Ω 7→ Kd being measurable with respect to the Effros σ-algebra. The claim then follows from
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for p ∈ Sd−1 be the support function of a compact convex set A. Note that by Beresteanu
and Molinari (2008, equation (A.1)), the Hausdorff metric can be expressed in terms of support
functions as

dH(A,B) = sup
p∈Sd−1

|s(A, p)− s(B, p)| ,

for A,B ∈ Kd
kc. Thus by the definition of B(Kd

kc), s(., p) : Kd
kc 7→ R is a measurable function for

each p ∈ Sd−1. This provides an alternative way to characterize the measurability of a compact
and convex valued multifunction, i.e., X : Ω 7→ Kd

kc is a SVRV if and only if {s(X, p), p ∈ Sd−1}
is a collection of random variables.

In this section, we consider empirical likelihood inference for testing the hypothesis

H0 : E[X] = Θ0 against H1 : E[X] 6= Θ0,

based on an independent and identically distributed (i.i.d.) sequence of compact and convex
SVRVs {X1, . . . , Xn}. We do not specify any parametric distribution form on µ. By Molchanov
(2005, Theorem 1.22 on p. 157) and linearity of the support function, under the assumption that
X is integrably bounded, the above testing problem is equivalent to testing

H0 : E[s(X, p)] = s(Θ0, p) for all p ∈ Sd−1 against H1 : E[s(X, p)] 6= s(Θ0, p) for some p ∈ Sd−1,

where E[·] is the ordinary mathematical expectation with respect to the measure µ. Therefore,
inference on the Aumann expectation is equivalent to inference on the support function (or
continuum of moment restrictions over p ∈ Sd−1). Since this is a testing problem for infinite
dimensional parameters without any parametric distributional assumption on the population µ,
it is of interest to develop certain non-parametric likelihood methods for this purpose. In the
following subsections we propose two likelihood concepts and test statistics.

2.1. Inference via marked empirical likelihood. One way to construct a non-parametric
likelihood function to test H0 is to fix the direction p ∈ Sd−1 in the support function and employ
the empirical likelihood approach. For given p, the marked empirical likelihood function under
the restriction E[s(X, p)] = s(Θ0, p) is written as

`(p) = max

{
n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wis(Xi, p) = s(Θ0, p), wi ≥ 0,
n∑
i=1

wi = 1

}
.

For each p, a non-parametric version of Wilks’ theorem (Owen, 1988) provides the null limiting
distribution −2 log `(p)

d→ χ2
1 under H0. Note that the empirical likelihood function `(p) marked

by the direction p imposes only a single restriction implied from the nullH0. In order to guarantee
consistency against any departure from H0, we need to assess the whole process {`(p) : p ∈
Sd−1} over the range of Sd−1. Taking the supremum leads to the Kolmogorov-Smirnov type test

Molchanov (2005, Theorem 2.7 (iii) on p. 29) (which states that the Effros σ-algebra induced on the family of
compact sets coincides with the Borel σ-algebra generated by the Hausdorff metric) and the fact that Kdc and Kdkc
are both Effros measurable (Molchanov 2005, pages 20 and 64).
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statistic2

Kn = sup
p∈Sd−1

{−2 log `(p)}.

In practice, the empirical likelihood function `(p) can be computed by its dual form based on
the Lagrange multiplier method, that is

`(p) =
n∏
i=1

1

1 + λ{s(Xi, p)− s(Θ0, p)}
,

where λ solves the first-order condition
∑n

i=1
s(Xi,p)−s(Θ0,p)

1+λ{s(Xi,p)−s(Θ0,p)} = 0. The asymptotic property
of the test statistic Kn is obtained as follows.

Theorem 1. Suppose {X1, . . . , Xn} is an i.i.d. sequence of compact and convex SVRSs satisfying
E[‖Xi‖ξH ] <∞ for some ξ > 2 and infp∈Sd−1 Var(s(Xi, p)) > 0. Then the followings hold true.

(i): Under the null hypothesis H0,

Kn
d→ sup
p∈Sd−1

Z(p)2

E[Z(p)2]
,

where Z is the Gaussian process with zero mean and covariance kernel E[s(X, p)s(X, q)]−
E[s(X, p)]E[s(X, q)].

(ii): Under the alternative hypothesis H1, Kn diverges to infinity.
(iii): Under the local alternative hypothesis H1n : E[s(Xi, p)] = s(Θ0, p) +n−1/2η(p) for all
p ∈ Sd−1 with a continuous function η on Sd−1,

Kn
d→ sup
p∈Sd−1

{Z(p) + η(p)}2

E[Z(p)2]
.

This theorem says that the null distribution of the Kolmogorov-Smirnov type statistic Kn

based on the marked empirical likelihood is characterized by the Gaussian process Z and that the
test based on Kn can possess non-trivial power against local alternatives at distance proportional
to n−1/2 in terms of some continuous function from the null hypothesis. Beresteanu and Molinari
(2008) consider local alternative hypotheses in the form of H∗1n : E[Xi] = ΘAn for some sequence
{ΘAn} of non-empty compact convex sets given by ΘAn⊕n−1/2∆1 = Θ0⊕n−1/2∆2, where ∆1 and
∆2 are compact convex sets for which there exists a third convex set ∆3 such that Θ0 = ∆1⊕∆3

(here ⊕ denotes the Minkowski summation). It is known that s(Ψ1 ⊕Ψ2, ·) = s(Ψ1, ·) + s(Ψ2, ·)
for any convex sets Ψ1 and Ψ2. Thus in terms of the support function, the local alternative
hypothesis H∗1n is equivalently written as s(ΘAn, p) = s(Θ0, p) + n−1/2{s(∆1, p) − s(∆2, p)} for
all p ∈ Sd−1. Consequently, Beresteanu and Molinari’s (2008) local alternative H∗1n is equivalent
to our H1n with η(p) = s(∆1, p) − s(∆2, p). Therefore, the test statistic Kn not only has non-
trivial power against the choice of local alternatives in Beresteanu and Molinari (2008) but also
against a much wider class of deviations from the null hypothesis.

2Although we focus on the Kolmogorov-Smirnov type statistic, it is also possible to employ other functionals of
the marked empirical likelihood process, such as the Cramér-von Mises type statistic

´
p∈Sd−1 −2 log `(p)dp.
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Note that the limiting null distribution of the statisticKn contains parameters to be estimated.
Thus we suggest estimating the critical values of the test statistic by the following bootstrap
procedure. Let s̄(p) = n−1

∑n
i=1 s(Xi, p).

Algorithm.

(1) Generate a bootstrap analog of support functions {s(X∗i , p)}ni=1 of size n by drawing from
a random sample of the empirical distribution of {s(Xi, p)}ni=1 with replacement.

(2) Compute the bootstrap counterpart K∗n = supp∈Sd−1{−2 log `∗(p)}, where

`∗(p) = max

{
n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wis(X
∗
i , p) = s̄(p), wi ≥ 0,

n∑
i=1

wi = 1

}
.

(3) Repeat Steps (1) and (2) to compute the empirical distribution F ∗n of K∗n.
(4) Estimate the α-th quantile of the limiting distribution of Kn by ĉn,α = inf{t : F ∗n(t) ≥

1− α}.

The validity of this bootstrap procedure can be seen as follows. The bootstrap counter-
part K∗n weakly converges to the limiting distribution of Kn, µ-almost surely (a.s.) by an
argument similar to the proof of Theorem 1 (i) along with the facts that (a) the empiri-
cal process n1/2m̄∗(·) weakly converges to Z(·), µ-a.s. (Giné and Zinn, 1990, Theorem 2.4);
and (b) supp∈Sd−1 |V̂ ∗(p) − E[Z(p)2]| p

∗
→ 0, µ-a.s. (where m̄∗(·) = n−1

∑n
i=1{s(X∗i , p) − s̄(p)},

V̂ ∗(p) = n−1
∑n

i=1{s(X∗i , p) − s̄(p)}2, and P ∗ denotes the bootstrap probability conditional on

the data). The latter is a consequence of supp∈Sd−1 |V̂ ∗(p) − Var∗(s(X∗i , p))|
p∗→ 0, µ-a.s. (Giné

and Zinn, 1990, Theorem 2.6) and supp∈Sd−1 |Var∗(s(X∗i , p)) − E[Z(p)2]| → 0 µ-a.s. (by a uni-
form law of large numbers), where Var∗(s(X∗i , p)) = n−1

∑n
i=1{s(Xi, p)− s̄(p)}2 is the variance

under the bootstrap distribution. Furthermore, by the Corollary of Lifshits (1982), the limiting
distribution of Kn is absolutely continuous with respect to the Lebesgue measure on R since
Var(Z(p)/E[Z(p)2]1/2) = 1 > 0 for all p ∈ Sd−1. It thus follows that the bootstrap critical value
ĉn,α converges in probability to the α-th quantile of the limiting distribution of Kn.

We now compare our empirical likelihood statistic Kn with the existing one. Beresteanu and
Molinari (2008) proposed a Wald type test statistic for H0 based on the Hausdorff distance be-
tween the null hypothetical set Θ0 and the average 1

n⊕
n
i=1Xi based on the Minkowski summation,

that is
Wn =

√
ndH

(
1

n
⊕ni=1 Xi,Θ0

)
.

It should be noted that for convex sets, the Wald type statistic Wn is alternatively written by
using the support functions as (see Beresteanu and Molinari, 2008, equation (A.1))

Wn =
√
n sup
p∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

s(Xi, p)− s(Θ0, p)

∣∣∣∣∣ .
Based on the proof of Theorem 1, we can see that

K1/2
n =

√
n sup
p∈Sd−1

E[Z(p)2]−1/2

∣∣∣∣∣ 1n
n∑
i=1

s(Xi, p)− s(Θ0, p)

∣∣∣∣∣+ op(1).
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Therefore, while the Wald type statistic Wn by Beresteanu and Molinari (2008) evaluates the
contrast 1

n

∑n
i=1 s(Xi, p)− s(Θ0, p) over p ∈ Sd−1, the empirical likelihood statistic Kn evaluates

the contrast normalized by its standard deviation.

2.2. Inference via sieve empirical likelihood. Another way to construct a non-parametric
likelihood function to test H0 is to incorporate the continuum of moment conditions E[s(X, p)] =

s(Θ0, p) for all p ∈ Sd−1 by a vector of moments with growing dimension. Let k = kn ≤ n/2

be a sequence of positive integers satisfying k → ∞ as n → ∞, and choose points (or sieve)
{p1, . . . , pk} from Sd−1 so that in the limit they form a dense subset of Sd−1. The sieve empirical
likelihood function under the restrictions E[s(X, pj)] = s(Θ0, pj) for j = 1, . . . , k is written as

l(p1, . . . , pk) = max

{
n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wis(Xi, pj) = s(Θ0, pj) for j = 1, . . . , k, wi ≥ 0,
n∑
i=1

wi = 1

}
.

Let mk(Xi) = (s(Xi, p1) − s(Θ0, p1), . . . , s(Xi, pk) − s(Θ0, pk))
′. In practice, the sieve empiri-

cal likelihood function l(p1, . . . , pk) can be computed by its dual form based on the Lagrange
multiplier method, that is

l(p1, . . . , pk) =
n∏
i=1

1

1 + γ′mk(Xi)
,

where γ solves the first-order condition
∑n

i=1
mk(Xi)

1+γ′mk(Xi)
= 0. The test statistic for H0 is

Ln = −2 log l(p1, . . . , pk). (1)

The asymptotic property of the sieve empirical likelihood statistic Ln is obtained as follows. Let
λmin(A) and λmax(A) be the minimum and maximum eigenvalues of a matrix A, respectively.
Also define φk = λmin(Var(mk(Xi))) and φ̂k = λmin(n−1

∑n
i=1mk(Xi)mk(Xi)

′).

Theorem 2. Suppose {X1, . . . , Xn} is an i.i.d. sequence of compact and convex SVRVs satisfying
E[‖Xi‖ξH ] < ∞ for some ξ ≥ 4. Also assume k → ∞ and (k5φ−6

k )
ξ
ξ−2 /n → 0 as n → ∞. Then

the followings hold true.

(i): Under the null hypothesis H0,

Ln − k√
2k

d→ N(0, 1).

(ii): Under the alternative hypothesis H1, (Ln − k)/
√

2k diverges to infinity.
(iii): Under the sequence of local alternative hypotheses H1n : E[s(Xi, p)] = s(Θ0, p) +

anη(p) for all p ∈ Sd−1 with a function η on Sd−1, where an = k1/4/
√
nη′kVar(mk(Xi))−1ηk

and ηk = (η(p1), . . . , η(pk))
′,

Ln − k√
2k

d→ N(2−1/2, 1).

The assumptions of Theorem 2 differ from those of Hjort, McKeague and van Keilegom (2009,
Theorem 2.1) in that the lowest eigenvalue of Var(mk(Xi)) explicitly enters the rate condition
for k. This is because the assumption of bounded eigenvalues imposed in Hjort, McKeague
and van Keilegom (2009) is typically violated in our examples. Indeed for the special case
when the eigenvalues of Var(mk(Xi)) are bounded from both above and below, inspection of
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the proof of Theorem 2 shows that the rate condition may be relaxed to k3/n → 0 which is
the one obtained in Hjort, McKeague and van Keilegom (2009). It may be also noted from
the proof that |φ̂k − φk| = Op(k/

√
n), hence the rate condition may be equivalently written as

(k5φ̂−6
k )

ξ
ξ−2 /n → 0 where φ̂k is observable. Thus to apply Theorem 2, the number of points in

the sieve should be chosen in such a way that φ̂k is not too low. One way to achieve this in
practice is to use a hard threshold for φ̂k such as φ̂k ≥ C(lnn)−1 for some positive constant C.
Then the rate condition will take the form of k5(lnn)6/n→ 0.

We argue in the proof of Theorem 2 that λmax(Var(mk(Xi))) = O(k). Thus Part (iii) of
Theorem 2 assures that the test based on Ln has non-trivial power against local alternatives at
distance proportional to at least k1/4n−1/2 in terms of some continuous function from the null
hypothesis. However this is not a strict bound as for some directions the statistic Ln is able to
distinguish alternatives that converge to the null faster than n−1/2, for e.g. when ηk is taken to
be the eigenvector corresponding to the smallest eigenvalue of Var(mk(Xi)).

2.3. Example: Mean of interval observations. As an illustration, let us consider infer-
ence for the mean of interval observations. Suppose we observe an i.i.d. sequence of intervals
{X1, . . . , Xn}, where Xi = [xLi, xUi] ⊂ R with xLi ≤ xUi almost surely. By Beresteanu and
Molinari (2008, Lemma A.2), {X1, . . . , Xn} is a sequence of i.i.d compact and convex SVRVs. In
this case, Sd−1 = {−1, 1} is finite, and the support function is written as

s(Xi, p) =

{
−xLi for p = −1,

xUi for p = 1.

Therefore, testing H0 : E[Xi] = Θ0 = [θL, θU ] is equivalent to testing two moment restrictions
E[xLi] = θL and E[xUi] = θU .

In this example, the Kolmogorov-Smirnov type test statistic based on the marked empirical
likelihood is written as

Kn = 2 max

{
n∑
i=1

log(1 + λL(−xLi + θL)),
n∑
i=1

log(1 + λU (xUi − θU ))

}
,

where λL and λU solve
∑n

i=1
−xLi+θL

1+λL(−xLi+θL) = 0 and
∑n

i=1
xUi−θU

1+λU (xUi−θU ) = 0, respectively. By
applying Theorem 1,

Kn
d→ max{z2

L/σ
2
L, z

2
U/σ

2
U},

under H0, where (
zL

zU

)
∼ N

((
0

0

)
,

(
σ2
L ρσLσU

ρσLσU σ2
U

))
,

with σ2
L = Var(xLi), σ2

U = Var(xUi), and ρ = Corr(xLi, xUi). Note that the (square of) Wald
type statistic based on the Hausdorff distance by Beresteanu and Molinari (2008) is

W 2
n = ndH

(
1

n
⊕ni=1 Xi,Θ0

)2

= nmax


(
− 1

n

n∑
i=1

xLi + θL

)2

,

(
1

n

n∑
i=1

xLi − θU

)2
 ,

which converges in distribution to max{z2
L, z

2
U} under H0.
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By incorporating the restrictions E[xLi] = θL and E[xUi] = θU , the (sieve) empirical likelihood
statistic in (1) reduces to the conventional one, that is

Ln = 2

n∑
i=1

log(1 + γ′m2(Xi)),

where m2(Xi) = (xLi−θL, xUi−θU )′ and γ solves the first-order condition
∑n

i=1
m2(Xi)

1+γ′m2(Xi)
= 0.

By applying the standard arguments (Owen, 1988), it holds that Ln
d→ χ2

2 under H0.

3. Generalization: Nuisance parameters

In the last section, we proposed two inference methods to test the simple hypothesis H0 :

E[X] = Θ for a SVRV. However, for some cases, the null hypothesis is written in the form of

H0 : E[X] = Θ0(ν),

where {Θ(ν) : ν ∈ Rr} is a collection of convex sets in Rd indexed by r-dimensional nuisance
parameters ν. We consider the situation where ν = h(E[z]) is a smooth function of means of a
random vector z ∈ Rr1 . We estimate ν by the method of moments estimator ν̂ = h(z̄) where
z̄ = n−1

∑n
i=1 zi. This setup is general enough to accommodate the existing examples such as

best linear prediction with interval outcomes (Beresteanu and Molinari (2008), Chandrasekhar
et al. (2012)).

By using the support function, the testing problem can be written as

H0 : E[s(X, p)] = s(Θ0(ν), p) for all p ∈ Sd−1 against H1 : E[s(X, p)] 6= s(Θ0(ν), p) for some p ∈ Sd−1.

If we plug-in the method of moments estimator ν̂, the marked empirical likelihood function is
obtained as

`(p, ν̂) = max

{
n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wis(Xi, p) = s(Θ0(ν̂), p), wi ≥ 0,

n∑
i=1

wi = 1

}
,

and the Kolmogorov-Smirnov type test statistic is written as

Kn(ν̂) = sup
p∈Sd−1

{−2 log `(p, ν̂)}.

To study the asymptotic properties of the test statistic Kn(ν̂), we impose the following assump-
tions.

Assumption N. Suppose that {(X1, z1), . . . , (Xn, zn)} is an i.i.d. sequence of pairs of compact
and convex SVRSs and random vectors, and that ∇h(E[z]) has full row rank, ‖Θ0(ν̂)‖H = Op(1),
and for some neighborhood N of ν there exists a function G(·; .) : Sd−1×N 7→ Rr such that G(p; ν)

is continuous with respect to p at the true value ν, supp∈Sd−1 ‖G(p; ν̂)−G(p; ν)‖ p→ 0, and

sup
p∈Sd−1

|s(Θ0(ν̂), p)− s(Θ0(v), p)−G(p; ν)′(ν̂ − ν)| = op(n
−1/2). (2)

Theorem 3. Suppose that Assumption N holds and that E[‖Xi‖ξH ] < ∞ for some ξ > 2,
infp∈Sd−1 Var(s(Xi, p)) > 0, and E[‖zi‖2] <∞. Then the followings hold true.
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(i): Under the null hypothesis H0,

Kn(ν̂)
d→ sup
p∈Sd−1

Z̃(p)2

Var(s(X, p))
,

where Z̃(·) = Z(·)−G(·; ν)′Γ is the Gaussian process implied from (Z(p),Γ)′ ∼ N(0, Ṽ (p))

and Ṽ (p) is the covariance matrix of the vector (s(X, p), (∇h(E[z])′{z − E[z]})′).
(ii): Under the alternative hypothesis H1, Kn(ν̂) diverges to infinity.
(iii): Under the local alternative hypothesis H1n : E[s(Xi, p)] = s(Θ0(ν), p) + n−1/2η(p) for

all p ∈ Sd−1 with a continuous function η on Sd−1,

Kn(ν̂)
d→ sup
p∈Sd−1

{Z̃(p) + η(p)}2

Var(s(X, p))
.

In comparison to Theorem 1, the above theorem says that for the marked empirical likelihood
with plug-in, the null distribution of the Kolmogorov-Smirnov type statistic Kn(ν̂) is charac-
terized by the Gaussian process Z̃(p)/

√
Var(s(X, p)), which reflects the contribution from the

variance of nuisance parameter estimation. Since the null distribution contains parameters to
be estimated, we propose the following bootstrap calibration. Let s̄(p) = n−1

∑n
i=1 s(Xi, p) and

V̂ (p) = n−1
∑n

i=1{s(Xi, p)− s̄(p)}2.

Algorithm.

(1) Generate a bootstrap sample {s(X∗i , p), z∗i }ni=1 of size n by drawing from a random sample
of the empirical distribution of {s(Xi, p), zi}ni=1 with replacement.

(2) Denote ν̂∗ = h(z̄∗) where z̄∗ = n−1
∑n

i=1 z
∗
i . Compute the bootstrap counterpart K∗n(ν̂)

by

K∗n(ν̂) =
{√

n
(
n−1

n∑
i=1

{s(X∗i , p)− s̄(X, p)} −G(p; ν̂)′(ν̂∗ − ν̂)
)
V̂ (p)−1/2

}2
.

(3) Repeat Steps (1) and (2) to compute the empirical distribution F ∗n,ν̂ of K∗n(ν̂).
(4) Estimate the α-th quantile of the limiting distribution of Kn(ν̂) by ĉn,α(ν̂) = inf{t :

F ∗n,ν̂(t) ≥ 1− α}.

The validity of this bootstrap procedure can be seen as follows. The bootstrap counterpart
K∗n(ν̂) weakly converges to the limiting distribution of Kn(ν̂) (µ-a.s.) by the continuous mapping
theorem and the facts that (a) {n−1/2

∑n
i=1{s(X∗i , p) − s̄(p)},

√
n(ν̂∗ − ν̂) : p ∈ Sd−1} weakly

converges to {Z(p),Γ : p ∈ Sd−1}, µ-a.s. by Giné and Zinn (1990, Theorem 2.4) and
√
n(ν̂∗−ν̂)

d∗→
Γ, µ-a.s. (since ∇h(E[z]) exists); (b) supp∈Sd−1 ‖G(p; ν̂)−G(p; ν)‖ p→ 0 by Assumption N; and
(c) supp∈Sd−1 |V̂ (p) − E[Z(p)2]| p→ 0 (by a uniform law of large numbers). Furthermore, under
the additional assumption that infp∈Sd−1 Var(Z̃(p)) > 0, the Corollary of Lifshits (1982) assures
that the limiting distribution of Kn(ν̂) is absolutely continuous with respect to the Lebesgue
measure on R. Thus it follows that the bootstrap critical value ĉn,α(ν̂) converges in probability
to the α-th quantile of the limiting distribution of Kn(ν̂).

We next consider a sieve empirical likelihood statistic with plug-in estimates for the nuisance
parameters. The presence of estimated nuisance parameters implies that empirical likelihood no
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longer has the ‘self-normalizing’ property as the asymptotic variance of the nuisance parameter
estimator enters into the limiting distribution. In order to restore self-normalization, we modify
the empirical likelihood function by adding a penalty term. To describe the test statistic, we first
define following notation. Let mk(Xi), m̃k(Xi), ṁk(Xi), and m̂k(Xi) be k-dimensional vectors
whose j-th elements are given by

mk,j(Xi) = s(Xi, pj)− s(Θ0(ν̂), pj),

m̃k,j(Xi) = s(Xi, pj)− s(Θ0(ν), pj),

ṁk,j(Xi) = s(Xi, pj)− s(Θ0(ν), pj)−G(pj ; ν)′∇h(E[zi])
′(zi − E[zi]),

m̂k,j(Xi) = s(Xi, pj)− s(Θ0(ν̂), pj)−G(pj ; ν̂)′∇h(z̄)′(zi − z̄),

respectively. Define Vk = Var(m̃k(Xi)), V̇k = Var(ṁk(Xi)), V̂k = n−1
∑n

i=1mk(Xi)mk(Xi)
′,

V̄k = n−1
∑n

i=1 m̂k(Xi)m̂k(Xi)
′, φ̇k = λmin(V̇k), and φ̄k = λmin(V̄k). Then the penalized (dual)

empirical likelihood test statistic is defined as

Ln(ν̂) = sup
γ∈Γn

Gn(γ),

where

Gn(γ) = 2
n∑
i=1

log(1 + γ′mk(Xi))− nγ′(V̄k − V̂k)γ

and Γn = {γ ∈ Rk : ‖γ‖ ≤ Cφ̄−3/2
k

√
k/n} for some positive constant C. In particular C is chosen

to satisfy C > max{2C ′φ̄1/2
k , 1} where C ′ is the positive constant obtained from ‖m̄‖ ≤ C ′

√
k/n

w.p.a.1. The condition on C ensures that the local maximum γ̂ of Gn(γ) lies in the interior of
Γn w.p.a.1 even in the case when φ̇−1

k is bounded. If φ̇−1
k diverges to infinity, this additional

condition on C may be dispensed with. Note that Gn(γ) is well defined only in the region
Sn = {γ ∈ Rk : γ′mk(Xi) > −1 for all i = 1, . . . , n}. However, since our assumptions guarantee
max1≤i≤n supγ∈Γn |γ

′mk(Xi)| = op(1), it holds that Γn ⊆ Sn w.p.a.1. It must be emphasized
moreover that while the restrictions on Γn are needed to derive the theoretical properties of the
estimator, in practice it may be possible to avoid an explicit choice of Γn since as we show later,
Ln(ν̂) is equivalently characterized under the null as the local maximum of Gn(γ) that is closest
to 0.

The asymptotic properties of the test statistic Ln(ν̂) are obtained as follows.

Theorem 4. Suppose that Assumption N holds and that E[‖Xi‖ξH ] < ∞ for some ξ ≥ 4 and
E[‖zi‖4] < ∞. For all w in a neighborhood of E[z] and all ν̃ in a neighborhood of ν, the
derivatives ∇h and G satisfy

|∇h(w)−∇h(E[z])| ≤M ‖w − E[z]‖α and sup
p∈Sd−1

|G(p; ν̃)−G(p; ν)| ≤M ‖ν̃ − ν‖α , (3)

for some α ≥ 2/3 and M > 0 independent of w and ν̃. Furthermore, assume k → ∞ and
(k5φ̇−6

k )
ξ
ξ−2 /n→ 0 as n→∞. Then the followings hold true.
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(i): Under the null hypothesis H0,

Ln(ν̂)− k√
2k

d→ N(0, 1).

(ii): Under the alternative hypothesis H1, (Ln(ν̂)− k)/
√

2k diverges to infinity.
(iii): Under the sequence of local alternative hypotheses H1n : E[s(Xi, p)] = s(Θ0(ν), p) +

anη(p) for all p ∈ Sd−1 with a function η on Sd−1, where an = k1/4/
√
nη′kV̇kηk and

ηk = (η(p1), . . . , η(pk))
′,

Ln(ν̂)− k√
2k

d→ N(2−1/2, 1).

The rate condition (k5φ̇−6
k )

ξ
ξ−2 /n → 0 is very similar to that in Theorem 2. Thus similar

remarks on the choice of k apply. In particular using the hard threshold rule φ̄k ≥ C(lnn)−1

gives the same rate condition k5(lnn)6/n → 0 as for Theorem 2. In comparison to Theorem
3, Theorem 4 requires further smoothness assumptions on s(Θo(ν), ·) as seen by the Hölder
continuity condition of equation (3). By taking G(·; ·) to be the derivative with respect to ν of
s(Θ0(ν), ·), the condition (3) is satisfied with α = 1 if at each p ∈ Sd−1, s(Θ0(ν ′), p) is twice
differentiable with respect to ν ′ in some neighborhood of ν.

Note that Ln(ν̂) is obtained as the maximum value of the criterion function Gn(γ) over the
set Γn. This is a convex optimization problem as shown by the following lemma.

Lemma 1. Suppose that the assumptions of Theorem 4 are satisfied and (k5φ̄−6
k )

ξ
ξ−2 /n → 0.

Then w.p.a.1, Gn(γ) is a strictly concave function over the domain Γn.

This lemma holds regardless of whether the null or the alternative holds true (recall from the
previous discussion that the practitioner should choose k and the sieve to satisfy (k5φ̄−6

k )
ξ
ξ−2 /n→

0). Using this lemma, we can obtain an alternative characterization of Ln(ν̂) under the null as the
local maximum of Gn(γ) that is closest to 0. Indeed, inspection of the proof of Theorem 4 shows
that Gn(γ) is maximized in the interior of Γn. This result is combined with the (strict) concavity
of Gn(γ) over Γn to assure that both definitions of Ln(ν̂) are in fact equivalent. Defining Ln(ν̂) as
a local maximum also makes it quite convenient for computation. In particular we could obtain
Ln(ν̂) by setting 0 as the initial point of an optimization algorithm for finding local maxima. The
convergence of this algorithm should generally be quite fast as Gn(·) is concave in this region.
Although Gn(·) is not concave outside Γn in general, the remark below provides some exceptions.

Remark 1. If V̇k−Vk is positive definite, then Γn can be taken to be Sn that is the domain over
which Gn(·) is well defined. To see this, we note from the proof of Theorem 4 that V̄k and V̂k
are both consistent estimators of V̇k and Vk. Thus since V̄k− V̂k is positive definite, the criterion
function Gn(·) is concave over its domain. Since Gn(γ) is maximized in the interior of Γn, it
follows that Ln(ν̂) is also the global maximum of Gn(γ) over Sn.

One instance where the assumption of positive definiteness of V̇k−Vk holds is when {Xi} and
{zi} are independent sequences and Var(zi) is positive definite. Alternatively, it is possible to
ensure this assumption in general by the following sample splitting method. First, we split the
sample randomly into two (possibly unequal) parts. One part of the sample is used solely to
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obtain an estimate for ν denoted by ν̂. Such an estimate is then used as plug-in to form the
penalized EL test statistic, Ln(ν̂) using observations only from the second sample. It is easy to
verify that with this method, if Var(zi) is positive definite, so is V̇k − Vk in the second sample.

Remark 2. We now compare the statistic Ln(ν̂) with the standard (non-penalized) sieve empir-
ical likelihood statistic with plug-in estimates for the nuisance parameters. The non-penalized
version is given by

L̃n(ν̂) = −2 log l(p1, . . . , pk, ν̂),

where

l(p1, . . . , pk, ν̂) = max

{
n∏
i=1

nwi

∣∣∣∣∣
∑n

i=1wis(Xi, pj) = s(Θ0(ν̂), pj) for j = 1, . . . , k,

wi ≥ 0,
∑n

i=1wi = 1

}
.

As noted earlier, L̃n(ν̂) is not internally studentized. The intuition for this is as follows. The
statistic L̃n(ν̂) has the quadratic approximation L̃n(ν̂) ≈ nm̄′kV̂

−1
k m̄k, where m̄k = n−1

∑n
i=1mk(Xi).

While the mk(Xi)’s are not i.i.d. as they contain the estimator ν̂, by using the Hölder conti-
nuity conditions, it can be seen that m̄k is well approximated by the average of i.i.d. variables
¯̇mk = n−1

∑n
i=1 ṁk(Xi). We thus approximate nm̄′kV̂

−1
k m̄k by n ¯̇m′kV

−1
k

¯̇mk. But note that
E[ṁk(Xi)ṁk(Xi)

′] = V̇k 6= Vk because mk(Xi) and ṁk(Xi) do not have the same variance. This
difference arises due to the variance of the estimator ν̂.

In contrast, for the case of Ln(ν̂) the penalty is chosen such that studentization is obtained.
The intuition for this is as follows. Within the set Γn, the criterion function Gn(γ) is uniformly
close to G∗n(γ) = 2

√
nγ′m̄k−γ′V̄kγ, which is maximized at γ∗ = V̄ −1

k

√
nm̄k. Thus we obtain the

quadratic approximation Ln(ν̂) ≈ G∗n(γ∗) = nm̄′kV̄
−1
k m̄k. But the latter is in turn approximated

by n ¯̇m′kV̇
−1
k

¯̇mk, which is now studentized.

3.1. Example: Best linear predictor. Suppose we wish to make inference on the best linear
predictor of the interval outcome Yi = [yLi, yUi] ⊂ R with yLi ≤ yUi almost surely, based on the
explanatory variables xi ∈ Rq. Note that although Yi is an interval, xi is a vector. The set of
best linear predictors of Yi given xi is identified as

Θ(Σ) = Σ−1E[Wi],

where

Σ =

(
1 Ex′i

Exi Exix
′
i

)
, Wi =

(
[yLi, yUi]

[xiyLi, xiyUi]

)
⊂ Rq+1.

By Beresteanu and Molinari (2008, Lemmas A.4 and A.5), {W1, . . . ,Wn} is a sequence of i.i.d
compact and convex SVRVs. Thus by properties of the Aumann expectation, Θ0 is a convex set.
We consider the case where xi is absolutely continuous with respect to the Lebesgue measure on
Rq. Beresteanu and Molinari (2008, Lemma A.8) showed that in this case Θ0 is strictly convex
and subsequently s(Θ0, p) is differentiable for all p ∈ Sq. We therefore wish to test the null
hypothesis H0 : Σ−1E[Wi] = Θ0 for a strictly convex set Θ0. Using the support function, the
null hypothesis is written as

H0 : E[s(W,p)] = s(ΣΘ0, p) for all p ∈ Sq against H1 : E[s(W,p)] 6= s(ΣΘ0, p) for some p ∈ Sq.
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Note that in this context the support function is given by s(Wi, p) = [yLi+(yUi−yLi)I{f(xi, p) ≥
0}]f(xi, p) with f(xi, p) = (1, x′i)p. Further, since s(ΣΘ0, p) = s(Θ0,Σp), the support function
of the set ΣΘ0 can be computed from that of Θ0.

In this example, we treat Σ as nuisance parameters. If Σ is known, the empirical likelihood
methods proposed in Section 2 apply. Here we consider the case where Σ is unknown and

estimated by Σ̂ =

(
1 n−1

∑n
i=1 x

′
i

n−1
∑n

i=1 xi n−1
∑n

i=1 xix
′
i

)
. Based on the notation of Theorems 3

and 4, we set as Xi = Wi, ν = vec(Σ), ν̂ = vec(Σ̂), zi = vec
(
(1, x′i)

′(1, x′i)
)
, h(z) = z, and

Θ0(ν̂) = Σ̂Θ0. Also, let ∇s(Θ0, p)
′ be the Fréchet derivative of s(Θ0, p) with respect to p for

p ∈ Rq+1 \ {0}, and set G(p; ν) = p⊗∇s(Θ0,Σp) where ⊗ represents the Kronecker product. In
particular note that G(p; ν)′ is the pointwise derivative of s(ΣΘ0, p) with respect to ν = vec(Σ).

The null distributions of the test statistics Kn(vec(Σ̂)) and Ln(vec(Σ̂)) are obtained as follows.

Proposition 1. Consider the setup of this subsection. Assume that {yLi, yUi, xi}ni=1 is i.i.d.,
where the distribution of xi is absolutely continuous with respect to the Lebesgue measure on Rq,
and Σ is full rank.

(i): Suppose E ‖yLi‖ξ < ∞, E ‖yUi‖ξ < ∞, E ‖xiyLi‖ξ < ∞, E ‖xiyUi‖ξ < ∞ for some
ξ > 2, E ‖xi‖4 <∞, and Var(yLi|xi),Var(yUi|xi) ≥ σ2 > 0 a.s. Then under H0,

Kn(vec(Σ̂))
d→ sup
p∈Sd−1

Z̃(p)2

Var(s(Wi, p))
,

where Z̃(·) = Z(·)−G(·; ν)′Γ is the Gaussian process implied from (Z(p),Γ)′ ∼ N(0, Ṽ (p))

and Ṽ (p) is the covariance matrix of the vector (s(Wi, p), {zi − vec(Σ)}′).
(ii): Suppose E ‖yLi‖ξ < ∞, E ‖yUi‖ξ < ∞, E ‖xiyLi‖ξ < ∞, E ‖xiyUi‖ξ < ∞ for some
ξ ≥ 4, E ‖xi‖4 < ∞, and ∇s(Θ0, p) is locally Hölder continuous of order α ≥ 2/3 over
the domain Sq. Also assume k →∞ and (k5φ̇−6

k )
ξ
ξ−2 /n→ 0. Then under H0,

Ln(vec(Σ̂))− k√
2k

d→ N(0, 1).

Part (i) of this proposition is closely related to the result in Beresteanu and Molinari (2008,
Theorem 4.3) who propose a Wald type test statistic. We employ the same assumptions as
theirs except for the requirement ξ > 2 as opposed to ξ ≥ 2. For Part (ii), we impose additional
smoothness assumptions over the boundary ∂Θ0 of Θ0 in the form of a Hölder continuity as-
sumption on ∇s(Θ0, p). In particular this is satisfied with α = 1 if s(Θ0, p) is twice differentiable
at each point p ∈ Sq. Also note that for Part (ii), the points {p1, . . . , pk} in the sieve have to be
chosen to satisfy the rate condition (k5φ̇−6

k )
ξ
ξ−2 /n→ 0. This necessitates that the choice of the

sieve should respect any constraints imposed by symmetry so as to make φ̇k 6= 0. In practice this
could be achieved by setting a hard threshold rule e.g. φ̇k ≥ C(lnn)−1 and/or using a suitable
moment selection procedure that deselects redundant constraints.

Computing the test statistic Ln(vec(Σ̂)) requires knowledge of ∇s(Θ0, p), the derivative of the
support function s(Θ0, p) at each p ∈ Sq. Note that for strictly convex sets, ∇s(Θ0, p) is just a
unique point θp ∈ ∂Θ0 obtained from s(Θ0, p) = p′θp. Hence ∇s(Θ0, p) is easily computed as a
by-product of the maximization problem to compute s(Θ0, p).
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Remark 3. We now briefly discuss the case of discrete regressors. In such a case, Θ0 is a
polytope with the set of all directions orthogonal to the exposed faces of the polytope given by
Q = {p ∈ Sq : µ

(
p′Σ(1, x′i)

′ = 0
)
6= 0} (Bontemps, Magnac and Maurin, 2012, Lemma 3). In

particular with discrete regressors, the number of elements in Q is finite and may be obtained
if Σ is known by solving p′Σ(1, x′)′ = 0 for each possible realization x of xi. Thus with known
Σ it is easy to construct valid tests by simply choosing the moment conditions associated with
directions in Q. Such a technique is however clearly infeasible with unknown Σ. Chandrasekhar
et al. (2012) address this issue by a data jittering technique to add an extra noise term so that
Θ0 is now strictly convex. While we expect our test statistics to remain valid, a detailed analysis
of their properties under data jittering is beyond the scope of this paper.

Remark 4. Chandrasekhar et al. (2012) generalized the notion of the best linear predictor to
accommodate instrumental variables. In particular, if there exist m-dimensional instrumental
variables wi, they characterize a set of parameter values Θ of the ‘best’ linear approximators (as
a function of xi) for the SVRV Yi as

Θ = {θ : θ = argmin
θ̃
E[(y∗i − x′iθ̃)w′iWwi(y

∗
i − x′iθ̃)], yLi ≤ y∗i ≤ yUi}

where W is some known positive definite m×m weight matrix. Using the Aumann expectation,
the above set Θ is characterized as

ΓΘ = E[W̃i],

where W̃i = xiw
′
iWwiYi is a compact and convex random set, and Γ = E[xiw

′
iWwix

′
i] is assumed

to be full rank (which is guaranteed if E[xix
′
i] is full rank). Therefore, a straightforward extension

of Proposition 1 also covers this generalization.

Remark 5. We close this section with a few remarks on the incomplete linear instrumental
variable model of Bontemps, Magnac and Maurin (2012). Consider the latent linear model

y∗i = x′iθ + εi,

where y∗i is an unobservable outcome variable, xi is a p-dimensional vector of observable ex-
planatory variables, and εi is the error term. Suppose we observe the interval outcome Yi =

[yLi, yUi] ⊂ R with yLi ≤ y∗i ≤ yUi almost surely. Further suppose xi is endogenous in the
sense that E[xiεi] 6= 0 but m-dimensional instrumental variables wi satisfying E[wiεi] = 0 are
available. We wish to conduct inference on θ based on the observables {Yi, xi, wi}ni=1. Assume
E[wiw

′
i] is full rank and E[wix

′
i] is full column rank. Then following Bontemps, Magnac and

Maurin (2012), the set of values of θ that are consistent with the observed data is

Θ = {θ : E[wix
′
i]θ = E[wiy

∗
i ], yLi ≤ y∗i ≤ yUi}.

In terms of the Aumann expectation, the above set is characterized by

E[wix
′
i]Θ = E[wiYi],

where wiYi = [wiyLi, wiyUi]. If m = p (called just-identification), E[wix
′
i] is full rank and the

same argument to Proposition 1 applies. For the case of m > p (called over-identification), in
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analogy with the generalized estimating equations, we may multiply E[xiw
′
i]W on both sides of

the above equation to obtain

E[xiw
′
i]WE[wix

′
i]Θ = E[xiw

′
i]WE[wiYi],

where W is any positive definite weighing matrix (which ensures that E[xiw
′
i]WE[wix

′
i] is in-

vertible). This inference problem however contains nuisance parameters on both sides of the null
hypothesis which lies outside the scope of the testing framework considered so far. It remains
only to conjecture that the marked EL test statistic can be extended to cover this case by us-
ing random function methods (Section 9.4 of van der Vaart, 1998) to take care of the nuisance
parameters E[xiw

′
i] on the right hand side of the above equation.
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Appendix A. Mathematical Appendix

A.1. Proof of Theorem 1.

Proof of (i). Observe that |s(X, p) − s(X, q)| ≤ ‖X‖H ‖p− q‖ a.s. for any p, q ∈ Sd−1 (i.e., the
support function is Lipschitz) and that Sd−1 is compact. Thus by a standard empirical process
argument (e.g., van der Vaart, 1998, Example 19.7), the process {s(X, p)− s(Θ0, p) : p ∈ Sd−1}
is µ-Donsker and consequently the empirical process n−1/2

∑n
i=1{s(Xi, ·)− s(Θ0, ·)} weakly con-

verges to Z(·). Next, the uniform law of large numbers guarantees supp∈Sd−1 |n−1
∑n

i=1{s(Xi, p)−
s(Θ0, p)}2 − E[Z(p)2]| p→ 0. Finally, since the assumption E[‖Xi‖ξH ] < ∞ for ξ > 2 implies
E[supp∈Sd−1 |s(Xi, p)|ξ] < ∞, a Borel-Cantelli lemma argument as in Owen (1988) ensures that
max1≤i≤n supp∈Sd−1 |s(Xi, p) − s(Θ0, p)| = o(n1/2) with probability 1. Then the conclusion fol-
lows by a similar argument as in the proof of Hjort, McKeague and van Keilegom (2009, Theorem
2.1).

Proof of (ii). Let gi(p) = s(Xi, p) − s(Θ0, p). Under H1, there exists p∗ ∈ Sd−1 such that
E[gi(p

∗)] 6= 0. We prove the case of E[gi(p
∗)] > 0. The case of E[gi(p

∗)] < 0 is shown in the
same manner. Pick any δ ∈ (0, 1/2). Observe that

− log `(p∗) = sup
λ∈R

n∑
i=1

log(1 + λgi(p
∗)) ≥

n∑
i=1

log(1 + n−(1/2+δ)gi(p
∗))

= n1/2−δ

{
1

n

n∑
i=1

gi(p
∗)

}
+ n−2δ

{
1

2n

n∑
i=1

gi(p
∗)2

}
+Op(n

−2δ),

where the first equality follows from the convex duality and the second equality follows from a
Taylor expansion. Since the first term diverges to infinity and the other terms are negligible, the
conclusion is obtained.

Proof of (iii). The proof is similar to that of Part (i) with the difference that the empirical process
n−1/2

∑n
i=1{s(Xi, ·) − s(Θ0, ·)} = n−1/2

∑n
i=1{s(Xi, ·) − E[s(Xi, ·)]} + η(·) weakly converges to

Z(·) + η(·).

A.2. Proof of Theorem 2.

Proof of (i). Define gi(p) = s(Xi, p)− s(Θ0, p), Vk = Var(mk(Xi)), m̄k = n−1
∑n

i=1mk(Xi), and
V̂k = n−1

∑n
i=1mk(Xi)mk(Xi)

′. Since the process {gi(p) : p ∈ Sd−1} is µ-Donsker, we have

‖m̄k‖ ≤
√
k sup
p∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

gi(p)

∣∣∣∣∣ = Op(
√
k/n). (4)

Also, using the property of λmax(·),

|λmax(V̂k)− λmax(Vk)| ≤
∥∥∥V̂k − Vk∥∥∥

≤ k sup
p,q∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

{gi(p)gi(q)− E[gi(p)gi(q)]}

∣∣∣∣∣ = Op(k/
√
n), (5)

where the equality follows from the fact that the process {gi(p)gi(q) : p, q ∈ Sd−1} is µ-Donsker.
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For the conclusion of the theorem, it is sufficient to show the followings:

Ln − nm̄′kV̂
−1
k m̄k√

2k

p→ 0, (6)

nm̄′kV̂
−1
k m̄k − k√

2k

d→ N(0, 1). (7)

We first show (6). By convex duality, Ln = supγ∈Sn Fn(γ), where Fn(γ) = 2
∑n

i=1 ln(1 +

γ′mk(Xi)) and Sn = {γ ∈ Rk : γ′mk(Xi) > −1 for i = 1, . . . , n}. DefineDn = max1≤i≤n ‖mk(Xi)‖,
γ̂ = arg max γ∈SnFn(γ), and γ∗ = V̂ −1

k m̄k. Based on the proof of Hjort, McKeague and van Keile-

gom (2009, Proposition 4.1), the result in (6) is obtained if (k5φ−6
k )

ξ
ξ−2 /n→ 0 and the followings

hold:
(n−1/2k3/2φ−3

k )Dn = op(1), (8)

‖γ∗‖ = Op(φ
−1
k

√
k/n), (9)

γ̂ exists w.p.a.1 and ‖γ̂‖ = Op(φ
−1
k

√
k/n), (10)

λmax(V̂k) = Op(k). (11)

For (8), observe that the assumption E[‖Xi‖ξH ] < ∞ implies E[supp∈Sd−1 |s(Xi, p)|ξ] < ∞ and

thus supk∈NE[
∥∥k−1/2mk(Xi)

∥∥ξ] < ∞. Then a similar argument as in the proof of Hjort, McK-

eague and van Keilegom (2009, Lemma 4.1) guarantees (8) under (k5φ−6
k )

ξ
ξ−2 /n → 0. For (9),

note that ‖γ∗‖ ≤ φ̂−1
k Op(

√
k/n) by (4). Also |φ̂k−φk| ≤

∥∥∥V̂k − Vk∥∥∥ = Op(k/
√
n) by the property

of λmin(·) and (5), which implies |φ̂−1
k −φ

−1
k | = Op(φ

−2
k k/

√
n). Consequently (9) is verified under

(k5φ−6
k )

ξ
ξ−2 /n → 0. For (10), define Ψn = {γ ∈ Rk : ‖γ‖ ≤ φ−2

k kn−1/2}. Note that by (8) and
the Cauchy-Schwarz inequality, supγ∈Ψn,1≤i≤n |γ

′mk(Xi)| = op(1). Thus Ψn ⊆ Sn w.p.a.1 and it
is possible to define γ̃ = arg maxγ∈Ψn Fn(γ) (note: γ̃ exists since Ψn is a compact set). Hence
w.p.a.1,

0 ≤ Fn(γ̃)/n ≤ 2γ̃′m̄k +

 sup
γ∈Ψn,1≤i≤n

−1(
1 + γ′mk(Xi)

)2

 γ̃′V̂kγ̃

≤ 2γ̃′m̄k −
1

2
γ̃′V̂kγ̃,

where the second inequality follows from an expansion around γ = 0. Also note that γ̃′V̂kγ̃ ≥
‖γ̃‖2 φk(1 + op(1)) by (5) while |γ̃′m̄k| ≤ ‖γ̃‖Op(

√
k/n) by (4). Therefore it must be the case

that ‖γ̃‖ = Op(φ
−1
k

√
k/n). This in turn implies that γ̃ is an interior solution w.p.a.1 and is the

global maximizer of Fn(γ) (since Fn(γ) is a concave function over its domain Sn). Therefore
we obtain γ̂ = γ̃ w.p.a.1, which proves (10). Finally, the result in (11) is obtained by noting
that supk∈NE[

∥∥mk(Xi)/k
1/2
∥∥2

] < ∞ guarantees λmax(V̂k) ≤
∥∥∥V̂k∥∥∥ = Op(k). Combining these

results, the claim in (6) follows.
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We now show (7). Decompose

nm̄′kV̂
−1
k m̄k − k√

2k
=

n−1
∑n

i=1mk(Xi)
′V −1
k mk(Xi)− k√

2k
+

∑
i 6=jmk(Xj)

′V −1
k mk(Xi)

n
√

2k

+
nm̄′k(V̂

−1
k − V −1

k )m̄k√
2k

. (12)

First, by the Markov inequality the first term of (12) is op(1) if φ−2
k k/n → 0. Second, we show

that the second term of (12) converges in distribution to N(0, 1). Since this term is a U-statistic,
we show that the conditions for the central limit theorem of de Jong and Bierens (1994, Lemma
2) are satisfied. In particular, it is sufficient to verify that E[Hn(mk(X1),mk(X2))2] < ∞ for
each n and that

lim
n→∞

{E[Gn(mk(X1),mk(X2))2]+n−1E[Hn(mk(X1),mk(X2))4]}/E[Hn(mk(X1),mk(X2))2]2 → 0,

where Hn(u, v) = u′V −1
k v/

√
k and Gn(u, v) = E[Hn(mk(X1), u)Hn(mk(X1), v)]. Arguing as in

the proof of de Jong and Bierens (1994, Theorem 1), we obtain E[Hn(mk(X1),mk(X2))2] = 1

and E[Gn(mk(X1),mk(X2))2] = 1/k. Furthermore,

E[Hn(mk(X1),mk(X2))4] ≤ k−2E
[
trace2[mk(X1)mk(X1)′V −1

k ]trace2[mk(X2)mk(X2)′V −1
k ]
]

≤ k−2E[{mk(X1)′V −1
k mk(X1)}2]E[{mk(X2)′V −1

k mk(X2)}2]

≤ k−2φ−4
k E[‖mk(X1)‖4]2 = O(φ−4

k k2),

where the first inequality follows from the Cauchy-Schwarz inequality and the equality follows
from supk∈NE[

∥∥mk(Xi)/k
1/2
∥∥ξ] < ∞ with ξ ≥ 4. Since φ−4

k k2/n → 0, the conditions for the
central limit theorem of de Jong and Bierens (1994, Lemma 2) are seen to be satisfied. Finally,
we show that the third term of (12) is negligible. By de Jong and Bierens (1994, Lemma 4a),
it is bounded by nk−1/2 ‖m̄k‖2 φ̂−1

k φ−1
k

∥∥∥V̂k − Vk∥∥∥. Thus using (4) and (5) the third term is

Op(
√
φ−4
k k3/n) and consequently negligible. Therefore, the result in (7) follows.

Proof of (ii). Since in the limit the points {p1, p2, . . . , pk} form a dense subset of Sd−1 and the
support function is continuous, under H1 there exists an integer N such that for all n ≥ N the
set of points includes a direction p∗ for which E[s(Xi, p

∗) − s(Θ0, p
∗)] 6= 0. We prove the case

of E[s(Xi, p
∗) − s(Θ0, p

∗)] > 0. The case of E[s(Xi, p
∗) − s(Θ0, p

∗)] < 0 is shown in the same
manner. Pick any δ ∈ (0, 0.3). Recalling the definition of Sn from Part (i), observe that

Ln = sup
γ∈Sn

2
n∑
i=1

log(1 + γ′mk(Xi))

≥ 2
n∑
i=1

log(1 + n−(1/2+δ){s(Xi, p
∗)− s(Θ0, p

∗)}),

for all n ≥ N , where the equality follows from the convex duality and the inequality follows by
setting γ = n−(1/2+δ)e∗ ∈ Sn w.p.a.1, where e∗ is the unit vector that selects the component
of mk(Xi) containing p∗. Then by an argument as in the proof of Theorem 1 (ii), Ln diverges
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to infinity at the rate n1/2−δ. But n1/2−δ/
√
k → ∞ and k/n1/2−δ → 0 for δ ≤ 0.3, thus

(Ln − k)/
√

2k = (Ln/
√

2k)(1− k/Ln) is seen to diverge to infinity.

Proof of (iii). We use the same notation as Part (i). Define m̃k(Xi) = mk(Xi)−E[mk(Xi)] and
¯̃mk = n−1

∑n
i=1 m̃k(Xi). Note that mk(Xi) = m̃k(Xi) + anηk. By similar arguments as used to

show (4), it follows that ¯̃mk = Op(
√
k/n). Furthermore, expanding V̂k = n−1

∑n
i=1 m̃k(Xi)m̃k(Xi)

′+

anηk ¯̃m′k +an ¯̃mkη
′
k +a2

nηkη
′
k, straightforward algebra and analogous weak convergence arguments

as in (5) assure that
∥∥∥V̂k − Vk∥∥∥ = Op(k/

√
n).

We first show that (Ln − nm̄′kV̂
−1
k m̄k)/

√
2k

p→ 0. By a similar argument as used to show (6)
this follows if equations (8)-(11) hold. Indeed (8) and (11) follow by the same arguments as in
the proof of part (i). To show (9), expand

γ∗ = V̂ −1
k

¯̃mk + (V̂ −1
k − V −1

k )anηk + anV
−1
k ηk. (13)

By similar arguments as in the proof of part (i), the first term of (13) is Op(φ−1
k

√
k/n). Next,

observe by λmax(Vk) = O(k) (which implies infk∈N ηkV
−1
k ηk > 0) that an ‖ηk‖ = Op(k

3/4/
√
n).

This, along with
∥∥∥V̂ −1

k − V −1
k

∥∥∥ = Op(φ
−2
k k/

√
n) ensures the second term of (13) isOp(φ−2

k k7/4/n).

Furthermore the third term of (13) is bounded by anφ
−1/2
k ‖V −1/2

k ηk‖ = Op(
√
φ−1
k k1/2/n) (since

ηkV
−1
k ηk = ‖V −1/2

k ηk‖2). Hence under (k5φ−6
k )

ξ
ξ−2 /n → 0, the first term of (13) dominates

the other two ensuring γ∗ = Op(φ
−1
k

√
k/n). This proves (9). Finally, to show (10), note

that by the same arguments as in part (i), it still holds that γ̃′V̂kγ̃ ≤ 4γ̃′m̄k which implies
γ̃′Vkγ̃ ≤ 4γ̃′m̄k +Op(φ

−4
k k3/n3/2) since

∥∥∥V̂k − Vk∥∥∥ = Op(k/
√
n) and ‖γ̃‖ ≤ φ−2

k kn−1/2 by defini-

tion of Ψn. Defining γ̆ = V
−1/2
k γ̃, we thus obtain under (k5φ−6

k )
ξ
ξ−2 /n→ 0,

‖γ̆‖2 ≤ 4‖γ̆‖
(
‖V −1/2

k
¯̃mk‖+ an‖V −1/2

k ηk‖
)

+ op

(φ−1
k k

n

)
.

Now ‖V −1/2
k

¯̃mk‖ = Op(
√
φ−1
k k/n) since ¯̃mk = Op(

√
k/n) while an‖V −1/2

k ηk‖ = k1/4/
√
n. Hence

it must be the case that ‖γ̆‖ = Op(
√
φ−1
k k/n) which implies ‖γ̃‖ ≤ φ

−1/2
k ‖γ̆‖ = Op(φ

−1
k

√
k/n)

and consequently that γ̃ is an interior solution w.p.a.1 and the global maximizer of Fn(γ). Thus
(10) follows. Combining the above results proves (Ln − nm̄′kV̂

−1
k m̄k)/

√
2k

p→ 0.

We now show that {nm̄′kV̂
−1
k m̄k−k}/

√
2k

d→ N(2−1/2, 1). First, noting that ‖m̄k‖ = Op(k
3/4/
√
n),

by a similar argument as used to show the negligibility of the third term in (12), we obtain

nm̄′kV̂
−1
k m̄k − k√

2k
=
nm̄′kV

−1
k m̄k − k√

2k
+Op(

√
φ−4
k k4/n).

We can further decompose

nm̄′kV
−1
k m̄k − k√

2k
=
n ¯̃m′kV

−1
k

¯̃mk − k√
2k

+
1√
2

+ 2
nanη

′
kV
−1
k

¯̃mk√
2k

. (14)

Since E[m̃k(Xi)] = 0 and E[m̃k(Xi)m̃k(Xi)
′] = Vk, an argument similar to that used to show (7)

implies that the first term of (14) converges in distribution to N(0, 1). The third term of (14)
can be written as n−1

∑n
i=1 zni where zni = n

√
2k−1anη

′
kV
−1
k {mk(Xi)− E[mk(Xi)]} is an i.i.d.
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sequence of random variables satisfying E[zni] = 0 and E[z2
ni] = 2nk−1/2. Thus, the Markov

inequality implies n−1
∑n

i=1 zni
p→ 0 and the conclusion follows.

A.3. Proof of Theorem 3.

Proof of (i). First, note that under Assumption N, the process
{n−1/2

∑n
i=1{s(Xi, p) − s(Θ0(ν), p)},

√
n(ν̂ − ν) : p ∈ Sd−1} weakly converges to {Z(p),Γ : p ∈

Sd−1}. Thus, by (2) and continuity ofG(p; ν) with respect to p, the process {n−1/2
∑n

i=1 s(Xi, ·)−
s(Θ0(ν̂), ·)} weakly converges to {Z(·)−G(·; ν)′Γ}.

Next, decompose

1

n

n∑
i=1

{s(Xi, p)− s(Θ0(v̂), p)}2 =
1

n

n∑
i=1

{s(Xi, p)− s(Θ0(v), p)}2 + {s(Θ0(ν), p)− s(Θ0(ν̂), p)}2

+2{s(Θ0(ν), p)− s(Θ0(ν̂), p)} 1

n

n∑
i=1

{s(Xi, p)− s(Θ0(v), p)}.

Using a uniform law of large numbers along with the fact that supp∈Sd−1 |s(Θ(ν̂), p)−s(Θ(v), p)| =
op(1) (by (2)), we obtain supp∈Sd−1 |n−1

∑n
i=1{s(Xi, p)− s(Θ0(ν̂), p)}2 −Var(s(X, p))| p→ 0.

Finally note that by similar arguments as in the proof of Theorem 1 (i),
n−1/2 max1≤i≤n supp∈Sd−1 |s(Xi, p)| = op(1). Thus by the assumption ‖Θ0(ν̂)‖H = Op(1), we
have n−1/2 max1≤i≤n supp∈Sd−1 |s(Xi, p)−s(Θ0(ν̂), p)| = op(1). Combining the above results, the
conclusion follows by a similar argument as in the proof of Hjort, McKeague and van Keilegom
(2009, Theorem 2.1).

Proof of (ii). Let gi(p) = s(Xi, p) − s(Θ0(ν̂), p). Under H1, there exists p∗ ∈ Sd−1 such that
E[s(Xi, p

∗)]− s(Θo(ν), p∗) 6= 0. By (2) and a suitable law of large numbers, n−1
∑n

i=1 gi(p
∗)

p→
E[s(Xi, p

∗)]−s(Θ0(ν), p∗). Furthermore by similar arguments as in Part (i), n−1
∑n

i=1 gi(p
∗)2 p→

E[{s(Xi, p
∗)− s(Θ0(ν), p∗)}2] <∞. The claim then follows in the same manner as the proof of

Theorem 1 (ii).

Proof of (iii). The proof is analogous to that of Theorem 1 (iii) and is therefore omitted.

A.4. Proof of Theorem 4.

Proof of (i). Define m̄k = n−1
∑n

i=1mk(Xi) and ¯̇mk = n−1
∑n

i=1 ṁk(Xi). Note that by the
mean value theorem (which is applicable since we assume the derivatives exist in a neigh-
borhood of ν), for each p ∈ Sd−1 there exists some ν̃(p) satisfying

∥∥ν̃(p) − ν
∥∥ ≤ ‖ν̂ − ν‖ and

s(Θ0(ν̂), p) − s(Θ0(ν), p) = G(p; ν̃(p))
′(ν̂ − ν). Thus by (3) and the asymptotic expansion

ν̂ − ν = ∇h(E[zi])
′n−1

∑n
i=1(zi − E[zi]) +Op(n

−(1+α)/2),

‖m̄k − ¯̇mk‖ ≤
√
k sup
p∈Sd−1

∥∥s(Θ0(ν̂), p)− s(Θ0(ν), p)−G(p; ν)′(ν̂ − ν)
∥∥+Op(

√
k/n1+α)

≤
√
k ‖ν̂ − ν‖ sup

p∈Sd−1

∥∥G(p; ν̃(p))−G(p; ν)
∥∥+Op(

√
k/n1+α)

= Op(
√
k/n1+α). (15)
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Also note that
¯̇mk = Op(

√
k/n), m̄k = Op(

√
k/n), (16)

where the first statement follows from the fact that the process
{s(Xi, p) − s(Θ0(ν)) − G(p; ν)′∇h(E[zi])

′(zi − E[zi]); p ∈ Sd−1} is µ-Donsker, and the second
statement follows by (15). Next, by similar weak convergence arguments as used to show (5)
along with supp∈Sd−1 |s(Θ(ν̂), p) − s(Θ(ν), p)| = Op(n

−1/2) ((by (2), ν̂ − ν = Op(n
−1/2) and

continuity of G(p; ν) in p), straightforward algebra assures that∥∥∥V̂k − Vk∥∥∥ = Op(k/
√
n). (17)

Observe that

k−1/2 ‖ṁk(Xi)− m̂k(Xi)‖

≤ sup
p∈Sd−1

‖s(Θ0(ν), p)− s(Θ0(ν̂), p)‖+ ‖∇h(E[zi])−∇h(z̄)‖ ‖zi − E[zi]‖ sup
p∈Sd−1

‖G(p; ν)‖

+ ‖∇h(z̄)‖ ‖zi − E[zi]‖ sup
p∈Sd−1

‖G(p; ν)−G(p; ν̂)‖+ ‖∇h(z̄)‖ ‖z̄ − E[zi]‖ sup
p∈Sd−1

‖G(p; ν̂)‖

= Op(n
−α/2) ‖zi − E[zi]‖+Op(n

−1/2),

where the equality follows from the assumptions in (2) and (3) combined with ‖z̄ − E[zi]‖ =

Op(n
−1/2) and ν̂ − ν = Op(n

−1/2). Also we can see that V̄k − n−1
∑n

i=1 ṁk(Xi)ṁk(Xi)
′ is

bounded by 2n−1
∑n

i=1{k1/2ġiδi + δ2
i }, where

ġi = sup
p∈Sd−1

|s(Xi, p)− s(Θ0(ν), p)−G(p; ν)′∇h(E[zi])
′(zi − E[zi])|

and δi = ‖ṁk(Xi)− m̂k(Xi)‖. Note that our assumptions guarantee E[ġ2
i ] < ∞. Thus sub-

stituting the expression for ‖ṁk(Xi)− m̂k(Xi)‖ from the previous equation and using the law
of large numbers, we obtain

∥∥V̄k − n−1
∑n

i=1 ṁk(Xi)ṁk(Xi)
′∥∥ = Op(

√
k2/nα). Also, we have∥∥∥n−1

∑n
i=1 ṁk(Xi)ṁk(Xi)

′ − V̇k
∥∥∥ = Op(k/

√
n) by analogous weak convergence arguments as

used to show (5). Combining these results enables us to show∥∥∥V̄k − V̇k∥∥∥ = Op(
√
k2/nα). (18)

For the conclusion of this theorem, it is sufficient to show the followings:

Ln(ν̂)− nm̄′kV̄
−1
k m̄k√

2k

p→ 0, (19)

nm̄′kV̄
−1
k m̄k − k√

2k

d→ N(0, 1). (20)

We first show (19). Let γ̂ ∈ arg maxγ∈Γn Gn(γ) (in fact γ̂ is unique as implied from Lemma
1 proved below, though this is not needed for the proof) and Dn = max1≤i≤n ‖mk(Xi)‖. Also
define G∗n(γ) = n(2γ′m̄k − γ′V̄kγ), which is maximized at γ∗ = V̄ −1

k m̄k. For (19), it is sufficient
to show that γ̂, γ∗ = Op(φ̇k

−1√
k/n), and supγ∈Ωn⊆Γn k

−1/2|Gn(γ) − G∗n(γ)| p→ 0 where Ωn =

{γ ∈ Rk : ‖γ‖ ≤ cφ̇k
−1√

k/n} with c > 0 chosen to ensure Ωn contains both γ̂ and γ∗ w.p.a.1
and Ωn ⊆ Γn (such a c exists by the definition of Γn). Indeed these are shown by an argument
similar to the proof of Hjort, McKeague and van Keilegom (2009, Proposition 4.1) if the following
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requirements are satisfied under (k5φ̇−6
k )

ξ
ξ−2 /n→ 0:

(n−1/2k3/2φ̇−3
k )Dn = op(1), (21)

‖γ∗‖ = Op(φ̇
−1
k

√
k/n), (22)

λmax(V̂k) = Op(k), (23)

γ̂ exists w.p.a.1 and ‖γ̂‖ = Op(φ̇
−1
k

√
k/n). (24)

To show (21), define Y1i and Y2i to be k dimensional vectors whose j-th elements for 1 ≤ j ≤ k

are given by s(Xi, pj) and s(Θ0(ν̂), pj), respectively. Note that mk(Xi) = Y1i − Y2i. Now,
(n−1/2k3/2φ̇−3

k ) max1≤i≤n ‖Y1i‖ = op(1) by an argument similar to that used to show (8) and
max1≤i≤n ‖Y2i‖ = Op(k

1/2) by the assumption ‖Θ0(ν̂)‖H = Op(1). Thus under k4φ̇−6
k /n → 0,

(21) follows. Next, (22) follows similarly as (9) by an application of (18) and kφ̇−2
k /n−α/2 → 0

for α ≥ 2/3. To show (23), observe that
∥∥∥V̂k − n−1

∑n
i=1 m̃k(Xi)m̃k(Xi)

′
∥∥∥ = Op(k/

√
n) by

supp∈Sd−1 |s(Θ(ν̂), p)− s(Θ(ν), p)| = Op(n
−1/2) and

∥∥n−1
∑n

i=1 m̃k(Xi)m̃k(Xi)
′∥∥ = Op(k) by the

assumption E[‖Xi‖2H ] < ∞. Hence using λmax(V̂k) ≤
∥∥∥V̂k∥∥∥ and the triangle inequality, (23)

is verified. Finally, for (24), we first note that γ̂ exists w.p.a.1 since Γn ⊆ Sn w.p.a.1 and Γn

is a compact set. Thus letting bn = max1≤i≤n supγ∈Γn

{
1− (1 + γ′mk(Xi))

−2
}
, an expansion

around γ = 0 yields
0 ≤ Gn(γ̂) ≤ n{2γ̂′m̄k − γ̂′(V̄k − bnV̂k)γ̂}.

Note that

bn = Op

(
max

1≤i≤n
sup
γ∈Γn

|γ′mk(Xi)|

)
= Op

(
Dn sup

γ∈Γn

‖γ‖

)
= op(φ̇

3/2
k k−1),

where the first equality follows from 1− (1 + x)−2 = O(x) as x→ 0, the second by the Cauchy-
Schwarz inequality, and the last by (21) and supγ∈Γn ‖γ‖ = Op(φ̇

−3/2
k

√
k/n); the latter in turn

following from the definition of Γn and |φ̇−3/2
k − φ̄

−3/2
k | = Op(φ̇

−5/2
k k/nα/2) = op(φ̇

−3/2
k ) for

α ≥ 2/5 by (18). Subsequently by the above, λmin(V̄k−bnV̂k) ≥ φ̄k−|bn|λmax(V̂k) = φ̇k(1+op(1)),
where to obtain the equality we also used (23) along with φ̄k − φ̇k = op(φ̇k) which is verified
for α ≥ 2/5 using (18). Thus γ̂′(V̄k + bnV̂k)γ̂ ≥ ‖γ̂‖2 φ̇k(1 + op(1)), which implies ‖γ̂‖ ≤
2φ̇−1

k ‖m̄k‖ (1 + op(1)). Therefore, by (16) it must be the case that γ̂ is an interior solution
w.p.a.1. (by the choice of C in the definition of Γn) and that ‖γ̂‖ = Op(φ̇

−1
k

√
k/n). This proves

(24). Combining these results, the claim in (19) follows.
We now show (20). We can decompose

nm̄′kV̄
−1
k m̄k − k√

2k
=

nm̄′k(V̄
−1
k − V̇ −1

k )m̄k√
2k

+
n(m̄k − ¯̇mk)

′V̇ −1
k m̄k√

2k

+
n ¯̇m′kV̇

−1
k (m̄k − ¯̇mk)√

2k
+
n ¯̇m′kV̇

−1
k

¯̇mk − k√
2k

. (25)

By similar arguments as that used to show the negligibility of third term of (12), the first term of

(25) is bounded by Op(
√
φ̇−4
k k3/nα) using (18). Since α ≥ 2/3, negligibility of the first term fol-

lows. Next, by (15) and (16), the second term of (25) is bounded by nφ̇−1
k ‖m̄k − ¯̇mk‖ ‖m̄k‖ /

√
2k =

Op(φ̇
−1
k

√
k/nα) and is thus negligible for α ≥ 1/3. Negligibility of the third term of (25) follows

23



by a similar argument. Finally note that E[ṁk(Xi)] = 0 and Var(ṁk(Xi)) = V̇k. Therefore, by
φ̇−4
k k2/n→ 0 and analogous arguments to that used to show (7), the last term of (25) converges

in distribution to N(0, 1). Thus the result in (20) follows.

Proof of (ii). Since in the limit the points {p1, p2, . . . , pk} form a dense subset of Sd−1 and the
support function is continuous, under H1 there exists an integer N such that for all n ≥ N

the set of points includes a direction p∗ for which E[s(Xi, p
∗) − s(Θ0, p

∗)] 6= 0. Without loss of
generality we prove the case of E[s(Xi, p

∗)−s(Θ0, p
∗)] > 0. Define gi(p) = s(Xi, p)−s(Θ0(ν̂), p),

ġi(p) = s(Xi, p)−s(Θ0(ν), p)−G(p; ν)′∇h(E[zi])
′(zi−E[zi]) and ḡi(p) = s(Xi, p)−s(Θ0(ν̂), p)−

G(p; ν̂)′∇h(z̄)′(zi − z̄). Pick any δ ∈ (0, 0.3) and observe that

Ln(ν̂) ≥ 2
n∑
i=1

log(1 + n−(1/2+δ)gi(p
∗)) + n−2δ

{ 1

n

n∑
i=1

gi(p
∗)2 − 1

n

n∑
i=1

ḡi(p
∗)2
}

= 2n1/2−δ

{
1

n

n∑
i=1

gi(p
∗)

}
− n−2δ

{
1

n

n∑
i=1

ḡi(p
∗)2

}
+Op(n

−2δ),

for all n ≥ N , where the inequality follows by setting γ = n−(1/2+δ)e∗ ∈ Γn w.p.a.1 where e∗

is the unit vector that selects the component of mk(Xi) containing p∗, and the equality follows
from a Taylor expansion. Now, n−1

∑n
i=1 gi(p

∗)
p→ E[s(Xi, p

∗)] − s(Θ0(ν), p∗) 6= 0 by suitable
law of large numbers and n−1

∑n
i=1 ḡi(p

∗)2 p→ E[ġi(p
∗)2] < ∞ by a similar argument used to

show (18). Thus Ln(ν̂) diverges to infinity at the rate n1/2−δ which implies, by arguing as in the
proof of Theorem 2(ii), that (Ln(ν̂)− k)/

√
2k diverges to infinity.

Proof of (iii). Define m̆k(Xi) = ṁk(Xi) − E[ṁk(Xi)] and ¯̆mk = n−1
∑n

i=1 m̆k(Xi). Note that
ṁk(Xi) = m̆k(Xi) + anηk, where an = O(k1/4/

√
n) (since λmax(V̇k) ≤ ‖V̇k‖ = O(k) by assump-

tion of finite second moments). Now by the same reasoning as that used to show (15), (16) it
follows that ‖m̄k − ¯̇mk‖ = Op(

√
k/n1+α) and

∥∥ ¯̆m
∥∥ = Op(

√
k/n). Furthermore by modifying the

arguments of (17) and (18) along the lines of the proof of Theorem 2(iii), it is still shown to be
the case that

∥∥∥V̂k − Vk∥∥∥ = Op(k/
√
n) and

∥∥∥V̄k − V̇k∥∥∥ = Op(
√
k2/nα).

We first prove that (19) still holds under H1n. As argued in the proof of part (i), this follows
if equations (21)-(24) hold. Indeed (21) and (23) follow by the same arguments as in the proof
of part (i). To show (22), expand γ∗ = V̄ −1

k (m̄k − ¯̇mk) + V̄ −1
k

¯̇mk. Now by standard arguments
using φ̄−1

k = φ̇−1
k (1 + op(1)), it follows that |V̄ −1

k (m̄k − ¯̇mk)| = Op(φ̇
−1
k

√
k/n1+α). Further, by

analogous arguments as in the proof of Theorem 2(iii), |V̄ −1
k

¯̇mk| = Op(φ̇
−1
k

√
k/n). Combining

the above assures γ∗ = Op(φ̇
−1
k

√
k/n) which proves (22). Finally, for (24) note that by the same

reasoning as in Part (i), we still have γ̂′(V̄k − bnV̂k)γ̂ ≤ 2γ̂′m̄k, which implies

γ̂′(V̇k − bnVk)γ̂ ≤ 2γ̂′m̄k +Op(φ̇
−3
k k2/n1+α/2),

since
∥∥∥V̂k − Vk∥∥∥ = Op(k/

√
n),

∥∥∥V̄k − V̇k∥∥∥ = Op(
√
k2/nα) and supγ∈Γn ‖γ‖ = Op(φ̇

−3/2
k

√
k/n);

the latter in turn following from the definition of Γn along with φ̄−3/2
k = φ̇

−3/2
k (1+op(1)). Defining

γ̆ = V̇
−1/2
k γ̂ and substituting in the previous display equation, we obtain under (k5φ̇−6

k )
ξ
ξ−2 /n→

24



0 and α ≥ 2/3,

λmin(I − bnV̇ −1/2
k VkV̇

−1/2
k ) ‖γ̆‖2 ≤ 2 ‖γ̆‖

(∥∥∥V̇ −1/2
k (m̄k − ¯̇mk)

∥∥∥+
∥∥∥V̇ −1/2

k
¯̆mk

∥∥∥+ an

∥∥∥V̇ −1/2
k ηk

∥∥∥)
+op(φ̇

−1
k k/n).

Now λmin(I − bnV̇ −1/2
k VkV̇

−1/2
k ) ≥ 1 − |bn|φ̇−1

k λmax(Vk) = 1 + op(1), where for the equality we
used λmax(Vk) = O(k) and the definition of bn. Furthermore, note that

∥∥∥V̇ −1/2
k (m̄k − ¯̇mk)

∥∥∥ =

Op(
√
φ̇−1
k k/n1+α),

∥∥∥V̇ −1/2
k

¯̆mk

∥∥∥ = Op(
√
φ̇−1
k k/n) and an

∥∥∥V̇ −1/2
k ηk

∥∥∥ = Op(k
1/4/
√
n). Therefore,

it must be the case that ‖γ̆‖ = Op(
√
φ̇−1
k k/n), which implies ‖γ̂‖ ≤ φ̇−1/2

k ‖γ̆‖ = Op(φ̇
−1
k

√
k/n).

This proves (24). Combining the results, the claim in (19) follows.
We now show that {nm̄′kV̄

−1
k m̄k − k}/

√
2k

d→ N(2−1/2, 1). Decompose,

nm̄′kV̄
−1
k m̄k − k√

2k
=

n(m̄k − ¯̇mk)
′V̄ −1
k m̄k√

2k
+
n ¯̇m′kV̄

−1
k (m̄k − ¯̇mk)√

2k

+
n ¯̇m′k(V̄

−1
k − V̇ −1

k ) ¯̇mk√
2k

+
n ¯̇m′kV̇

−1
k

¯̇mk − k√
2k

. (26)

Note that an = O(k1/4/
√
n) implies ¯̇mk = Op(k

3/4/
√
n) and subsequently, m̄k = Op(k

3/4/
√
n).

Thus by straightforward algebra and the fact that |φ̄−1
k − φ̇k

−1| = op(φ̇
−1
k ), the first two terms of

(26) are Op(φ̇−1
k k3/4/nα/2) and therefore negligible under (k5φ̇−6

k )
ξ
ξ−2 /n→ 0 and α ≥ 1/3. Next

we show that the third term of (26) is negligible. To this end we further decompose the third
term of (26) as

n ¯̇m′k(V̄
−1
k − V̇ −1

k ) ¯̇mk√
2k

=
n ¯̆m′k(V̄

−1
k − V̇ −1

k ) ¯̆mk√
2k

+
nan ¯̆m′kV̄

−1
k (V̇k − V̄k)V̇

−1/2
k (V̇

−1/2
k ηk)√

2k

+
na2

nη
′
kV̄
−1
k (V̇k − V̄k)V̇

−1/2
k (V̇

−1/2
k ηk)√

2k
. (27)

Now by similar arguments as that used to show the negligibility of third term of (12), the first

term of (27) is Op(
√
φ̇−4
k k3/nα). Next, the second term of (27) is bounded by

nk−1/2an
∥∥ ¯̆m
∥∥ φ̄−1

k φ̇
−1/2
k

∥∥∥V̇k − V̄k∥∥∥∥∥∥V̇ −1/2
k ηk

∥∥∥ = Op(

√
φ̇−3
k k5/2/nα),

where the equality follows from
∥∥ ¯̆m
∥∥ = Op(

√
k/n),

∥∥∥V̄k − V̇k∥∥∥ = Op(
√
k2/nα), and |φ̄−1

k −

φ̇k
−1| = op(φ̇

−1
k ). Furthermore, an analogous argument shows that the third term of (27) is

Op(
√
φ̇−3
k k3/nα). Combining these results proves that for α ≥ 2/3, the third term of (26) is

negligible. Finally, by φ̇−4
k k2/n→ 0 and similar arguments to that used in the proof of Theorem

2 (iii), the last term of (26) converges in distribution to N(2−1/2, 1). Thus the claim follows.

A.5. Proof of Lemma 1. The claim follows if we show that uniformly over γ ∈ Γn, the second
derivative of Gn(γ) denoted by D2Gn(γ) is negative definite w.p.a.1. Define the preference
relation � over matrices as A � B if A − B is positive semi-definite. Then note that for all
γ ∈ Γn,

− 1

2n
D2Gn(γ) =

1

n

n∑
i=1

mk(Xi)mk(Xi)
′

(1 + γ′mk(Xi))2
+ V̄k − V̂k � V̄k − |bn|V̂k,
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where bn = supγ∈Γn,1≤i≤n
{

1− (1 + γ′mk(Xi))
−2
}
is as defined in the proof of Theorem 4. Now

by similar arguments as in the proof of Theorem 4 (i), we observe under (k5φ̄−6
k )

ξ
ξ−2 /n → 0

that (n−1/2k3/2φ̄−3
k )Dn = op(1), and consequently |bn| = op(φ̄

3/2
k k−1). Thus λmin(V̄k − bnV̂k) ≥

φ̄k−|bn|λmax(V̂k) = φ̄k(1 + op(1)), where to obtain the equality we also used (23) (note from the
proof of Theorem 4 (i) that (23) holds regardless of whether under the null or the alternative).
The above implies infγ∈Γn{λmin(−D2Gn(γ))} ≥ 2nφ̄k(1 + op(1)) > 0 w.p.a.1, which proves the
desired result.

A.6. Proof of Proposition 1.

Proof of (i). It is enough to show that the conditions of Theorem 3 are satisfied.
We first show that Assumption N is satisfied. The condition

∥∥∥Θ0(vec(Σ̂))
∥∥∥
H

= Op(1) is verified

by
∥∥∥Θ0(vec(Σ̂))

∥∥∥
H

=
∥∥∥Σ̂Θ0

∥∥∥
H
≤
∥∥∥Σ̂
∥∥∥ ‖Θ0‖H and Σ̂

p→ Σ. Let ν = vec(Σ) and G(p; ν) = p ⊗
∇s(Θ0,Σp) for p ∈ Sq. We now verify that G(p; ν) satisfies the properties set out in Assumption
N. Since xi has no mass points, by Bontemps, Magnac and Maurin (2012, Lemma 3) s(Θ0, p) is
Fréchet differentiable with derivative ∇s(Θ0, p) = E

[
(yUi − yLi)I{f(xi, p) ≥ 0}(1, x′i)′

]
at each

p ∈ Rq+1\{0}. From the expression for ∇s(Θ0, p), it follows that ∇s(Θ0, p) is continuous at each
p ∈ Rq+1 \ {0} (since xi has no mass points). This proves continuity of G(p; ν) with respect to
p. We now show supp∈Sq ‖G(p; ν̂)−G(p; ν)‖ p→ 0. Since ∇s(Θ0, p) is continuous at each p ∈ Sq,
it is also uniformly continuous on Sq. So, we have

sup
p∈Sd−1

∥∥∥∇s(Θ0, Σ̂p)−∇s(Θ0,Σp)
∥∥∥ = sup

p∈Sd−1

∥∥∥∇s(Θ0, Σ̂p/
∥∥∥Σ̂p

∥∥∥)−∇s(Θ0,Σp/ ‖Σp‖)
∥∥∥ p→ 0,

where the equality follows from ∇s(Θ0, p) = ∇s(Θ0, p/ ‖p‖) for p ∈ Rq+1 \ {0} (i.e., ∇s(Θ0, p)

is homogenous of degree 0 in p), and the probability limit follows by uniform continuity and the
fact that supp∈Sq

∥∥(Σ̂p/
∥∥∥Σ̂p

∥∥∥)− (Σp/ ‖Σp‖)
∥∥ p→ 0 if Σ̂

p→ Σ and Σ is positive definite. Thus the

claim supp∈Sq ‖G(p; ν̂)−G(p; ν)‖ p→ 0 follows. We now show that (2) holds. Indeed, this follows
by an argument similar to the proof of Bontemps, Magnac and Maurin (2012, Lemma 13) which
assures that supp∈Sq |s(Θ0, Σ̂p)− s(Θ0,Σp)−∇s(Θ0, p)

′(Σ̂−Σ)p| = op(n
−1/2). Combining these

results, Assumption N is seen to be verified.
We next verify the other conditions of Theorem 3. The condition E[‖Wi‖ξH ] < ∞ for some

ξ > 2 follows from E[supp∈Sq |s(Wi, p)|ξ] < ∞, which is verified under the stated assumptions
on the moments of {yLi, yUi, xi}. Furthermore the condition E[‖zi‖2] < ∞ follows from the
assumption of finite fourth moments of xi. It remains to show infp∈Sq Var(s(Wi, p)) > 0. To this
end, we adapt the proof of Beresteanu and Molinari (2008, Theorem 4.3) to write

Var(s(Wi, p)) ≥ E
[
Var

(
[yLiI{f(xi, p) < 0}+ yUiI{f(xi, p) ≥ 0}] f(xi, p)

∣∣∣xi)]
= E

[
f(xi, p)

2 {Var(yLi|xi)I{f(xi, p) < 0}+ Var(yUi|xi)I{f(xi, p) ≥ 0}}
]

≥ σ2p′Σp > 0

for each p ∈ Sq, where the first inequality follows by the law of iterated expectations, the
second inequality follows from the assumption Var(yLi|xi),Var(yUi|xi) ≥ σ2 > 0 a.s., and the
last inequality follows by the assumption of full rank for Σ. We note that an extension of the
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above argument also suffices to show the stronger condition infp∈Sq Var(Z̃(p)) > 0, which is
needed for the validity of the bootstrap. Indeed, this follows from the fact that Var(Z̃(p)) =

Var(s(Wi, p) − G(p, ν)′(zi − vec(Σ))) ≥ E[Var(s(Wi, p)|xi)] since zi is a measurable function of
xi.

Proof of (ii). Note that the only additional assumption of Theorem 4 is the one corresponding to
equation (3). Thus it is sufficient to prove that G(p; ν) = p⊗∇s(Θ0,Σp) satisfies equation (3).
First note that as Σ is assumed to be full rank, there exists a neighborhood N of Σ such that
infp∈Sq

∥∥∥Σ̃p
∥∥∥ ≥ c > 0 for all Σ̃ ∈ N and some positive constant c. Then there exists a constant

M independent of (Σ, Σ̃, p) such that for all Σ, Σ̃ ∈ N and p ∈ Sq,∥∥∥∇s(Θ0,Σp)−∇s(Θ0, Σ̃p)
∥∥∥ =

∥∥∥∇s(Θ0,Σp/ ‖Σp‖)−∇s(Θ0, Σ̃p/
∥∥∥Σ̃p

∥∥∥)
∥∥∥

≤ M
∥∥(Σp/ ‖Σp‖)− (Σ̃p/

∥∥∥Σ̃p
∥∥∥)
∥∥α

≤ 2Mc−α
∥∥∥Σ− Σ̃

∥∥∥α ,
for some α ≥ 2/3, where the first inequality follows by the assumption of local Hölder continuity
of ∇s(Θ0, p) of order α ≥ 2/3 on Sq (since on compact metric spaces, local Hölder continuity
is equivalent to (global) Hölder continuity). Therefore, by G(p; ν) = p ⊗∇s(Θ0,Σp), the claim
follows.
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