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Abstract. This paper is concerned with inference on the cumulative distribution function (cdf)

FX∗ in the classical measurement error model X = X∗ + ε. We consider the case where the

density of the measurement error ε is unknown and estimated by repeated measurements, and

show validity of a bootstrap approximation for the distribution of the deviation in the sup-norm

between the deconvolution cdf estimator and FX∗ . We allow the density of ε to be ordinary

or super smooth. We also provide several theoretical results on the bootstrap and asymptotic

Gumbel approximations of the sup-norm deviation for the case where the density of ε is known.

Our approximation results are applicable to various contexts, such as confidence bands for FX∗

and its quantiles, and for performing various cdf-based tests such as goodness-of-fit tests for

parametric models of X∗, two sample homogeneity tests, and tests for stochastic dominance.

Simulation and real data examples illustrate satisfactory performance of the proposed methods.

1. Introduction

This paper is concerned with inference on the cumulative distribution function (cdf) FX∗ in

the classical measurement error model X = X∗ + ε. Here, we observe X instead of X∗, and ε

is a measurement error. There is a rich literature on using density deconvolution for estimating

the probability density function (pdf) fX∗ (see, Meister, 2009, for a review). By contrast, the

literature on estimation and inference for the cdf FX∗ is relatively thin. Fan (1991) proposed

a cdf estimator by integrating the deconvolution density estimator with some truncation. This

truncation for the integral is circumvented in Hall and Lahiri (2008) (for the case where the pdf

fε of ε is symmetric) and Dattner, Goldenshluger and Juditsky (2011) (for the case where fε is

possibly asymmetric). Hall and Lahiri (2008) studied the L2-risk properties of the cdf estimator.

Dattner, Goldenshluger and Juditsky (2011) considered minimax rate optimal estimation of FX∗ .

Both Hall and Lahiri (2008) and Dattner, Goldenshluger and Juditsky (2011) focused on the risk

properties of the estimator F̃X∗(t0) at a given t0 and assumed known ordinary smooth densities

for fε. These papers demonstrate that, in contrast to the no measurement error case, the cdf

estimator F̃X∗(t0) typically converges to FX∗(t0) at a nonparametric rate. On the other hand,

Söhl and Trabs (2012) established a uniform central limit theorem for linear functionals of the
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deconvolution estimator that can be applied to derive a Donsker-type theorem, i.e., the weak

convergence of
√
n{F̃X∗(·) − FX∗(·)} to a Gaussian process. Söhl and Trabs (2012) considered

the case of known ordinary smooth fε, and for the Donsker-type result obtained therein, it

is demanded that the Fourier transform f ft
ε satisfies |f ft

ε (·)| ≤ C| · |−β for some β < 1/2 and

C > 0. The latter excludes the Laplace distribution, for instance. It must be emphasized that

(except for Fan, 1991, on the truncated estimator) all these papers concentrate on the case of

ordinary smooth and known fε, so the cases of super smooth and/or unknown fε (with repeated

measurements) are not covered.

In this paper, we investigate asymptotic and bootstrap approximations for the distributions

of the maximal deviations Sn = supt∈T |F̃X∗(t) − FX∗(t)| and Tn = supt∈T |F̂X∗(t) − FX∗(t)|

in the sup-norm over some set T , where F̃X∗ is the deconvolution cdf estimator by Hall and

Lahiri (2008) for known symmetric fε or Dattner, Goldenshluger and Juditsky (2011) for known

possibly asymmetric fε, and F̂X∗ is its adaptation to the case of unknown fε estimated by

repeated measurements. Our analysis allows fε to be ordinary or super smooth, or to be unknown

and estimated by repeated measurements. If fε is known to be symmetric, F̂X∗ is constructed

by using Delaigle, Hall and Meister’s (2008) estimator on the Fourier transform of fε. If fε is

possibly asymmetric, F̂X∗ is constructed by using Comte and Kappus’ (2015) estimator, which

is a regularized version of Li and Vuong’s (1998) estimator based on the Kotlarski identity.

More specifically, our main contributions are described as follows: First, we propose a boot-

strap method to approximate the distribution of Tn and establish its asymptotic validity. This

is not a trivial extension from the existing results. Compared to Hall and Lahiri (2008) and

Dattner, Goldenshluger and Juditsky (2011), which studied pointwise estimation on FX∗ , we

investigate uniform inference problems. Even for the same estimator, theoretical developments

to analyze the pointwise and uniform properties of nonparametric estimators are very different

(see, e.g., Giné and Nickl, 2016, for a general discussion on uniform inference). Furthermore,

while these papers (and Söhl and Trabs (2012) mentioned above) focus on the case of known

and ordinary smooth fε, our analysis also covers the case of unknown and/or super smooth fε.

As is known in the literature, the analysis on the super smooth case is very different from the

ordinary smooth case. Indeed, to the best of our knowledge, the limiting distributions of Sn
and Tn for super smooth fε are still open questions. In this paper, we argue that by applying

a novel idea in Chernozhukov, Chetverikov and Kato (2014) for constructing bootstrap-based

confidence bands to our measurement error setup, we can establish the asymptotic validity of

our bootstrap approximation for the distribution of Tn without deriving its limiting distribution.

Our bootstrap approximation allows fε to be possibly asymmetric at the cost of discarding some

data to estimate FX∗ (see, Section 3.1).

2



Second, for the case of known fε, we characterize the convergence rate of the bootstrap

approximation error and find that it is of polynomial order under ordinary smooth errors, and

logarithmic order under super smooth errors. Furthermore, for the case of known ordinary

smooth fε, we show that after suitable normalization, the asymptotic distribution of Sn is

characterized by the Gumbel distribution. Although the assumption of known fε is less realistic

in empirical economic analyses, these results provide building blocks to establish our main results

for the case of unknown fε, and are also new in the literature of nonparametric deconvolution

methods. In the context of density deconvolution, Bissantz, Dümbgen, Holzmann and Munk

(2007) extended Bickel and Rosenblatt’s (1973) construction of uniform confidence bands for

densities to the classical measurement error model with the ordinary smooth fε. A recent paper

by Kato and Sasaki (2018) considered confidence bands of the pdf fX∗ with unknown fε. In

contrast to these papers, we are concerned with inference on the cdf FX∗ .1

Third, our approximation results on the distributions of Tn and Sn are applicable to various

contexts, such as confidence bands for FX∗ and its quantiles, and for performing various cdf-

based tests such as goodness-of-fit tests for parametric models of FX∗ , two sample homogeneity

tests, and tests for stochastic dominance. We emphasize that some inference problems, such

as testing for stochastic dominance, are cumbersome to be handled by density-based methods.

Also, even in cases where density-based methods are applicable (e.g., goodness-of-fit testing), the

cdf-based methods are expected to have more desirable power properties. All these applications

are new in the literature. For example, to the best of our knowledge, our stochastic dominance

test is the first test in the literature to be robust to the presence of measurement errors. Dattner,

Reiß and Trabs (2016) proposed a quantile estimator of X∗ and obtained its uniform convergence

rate. This paper provides a confidence band for the quantile function of X∗.

This paper is organized as follows. In Section 2, we introduce our setup (Section 2.1) and

present the main result, bootstrap approximation for the distribution of Tn in the case of un-

known symmetric fε (Section 2.2). In Section 3, we extend the results to the cases where fε is

unknown and possibly asymmetric (Section 3.1) and direct observations from fε are available

(Section 3.2). Section 4 presents additional theoretical results on the asymptotic properties of

Sn in the case of known fε. Section 5 contains four applications of the main results: a confidence

band for quantiles (Section 5.1), goodness-of-fit test for parametric models of FX∗ (Section 5.2),

1In the context of nonparametric errors-in-variables regression analysis, Delaigle, Hall and Jamshidi (2015) pro-
posed a bootstrap-based pointwise confidence interval of the regression function for the case of known fε. A recent
paper by Kato and Sasaki (2017) developed a bootstrap-based uniform confidence band for the case of unknown
fε. Also in the context of nonparametric inverse regression analysis, which also employs deconvolution methods,
Birke, Bissantz and Holzmann (2010) and Proksh, Bissantz and Dette (2015) proposed confidence bands for the
regression function. We refer Kato and Sasaki (2017) for an extensive survey on this literature. Finally, Kato,
Sasaki and Ura (2019) proposed an alternative approach to construct a confidence band for fX∗ by utilizing linear
moment restrictions obtained from Kotlarski’s identity.
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homogeneity test for two samples (Section 5.3), and test for stochastic dominance (Section 5.4).

Section 6 presents some simulation evidence. In Section 7, we consider a real data example. In

particular, we employ the new test of stochastic dominance to study welfare changes of different

population sub-groups using potentially mis-measured income data from Korea. All proofs are

contained in the appendix.

2. Main result

2.1. Setup and estimator. We first introduce our basic setup. Suppose we observe a random

sample {Xi}ni=1 generated from

X = X∗ + ε, (2.1)

where X∗ is an unobservable variable of interest and ε is its measurement error. Throughout

the paper, ε is assumed to be independent of X∗ (i.e., ε is the classical measurement error). Let

i =
√
−1 and f ft be the Fourier transform of a function f . If the pdf fε of ε is known, the pdf

fX∗ of X∗ can be estimated by the so-called deconvolution kernel density estimator (see, e.g.,

Stefanski and Carroll, 1990)

f̃X∗(t) = 1
nh

n∑
i=1

K
(
t−Xi

h

)
, where K(u) = 1

2π

∫ 1

−1
e−iωu K ft(ω)

f ft
ε (ω/h)dω, (2.2)

where h is a bandwidth and K is a kernel function with K ft supported on [−1, 1].

This section focuses on the case where fε is symmetric. The general case of possibly asymmet-

ric fε will be discussed in Section 3.1. If fε is symmetric, integration of f̃X∗ yields the following

estimator for the cdf FX∗ of X∗ (see, Hall and Lahiri, 2008)

F̃X∗(t) = 1
2 + 1

n

n∑
i=1

L
(
t−Xi

h

)
, where L(u) = 1

2π

∫ 1

−1

sin(ωu)
ω

K ft(ω)
f ft
ε (ω/h)dω. (2.3)

The estimator F̃X∗ requires knowledge of the distribution of ε, which is unrealistic in many

applications. In general, however, fε cannot be identified by a single measurement. Identification

of fε can be restored if we have two or more independent noisy measurements of the variable

X∗. More specifically, suppose that we observe

Xi,j = X∗i + εi,j for j = 1, . . . , Ni and i = 1, . . . , n, (2.4)

where X∗i is the error-free variable and εi,j ’s are independently distributed measurement errors

from the density fε. We thus have Ni repeated measurements of each variable X∗i . We shall

assume that the number of repeated observations is bounded above (i.e., Ni ≤ C <∞ for all i).

This assumption is not critical for our theory but allows us to simplify the proofs considerably.

Since in practice the number of repeated measurements is small anyway, we do not pursue the
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generalization to growing C. Under the assumption that fε is symmetric, its Fourier transform

f ft
ε can be estimated by (Delaigle, Hall and Meister, 2008)

f̂ ft
ε (ω) =

∣∣∣∣∣∣ 1
N

n∑
i=1

Ni∑
(j1,j2)∈Ji

cos{ω(Xi,j1 −Xi,j2)}

∣∣∣∣∣∣
1/2

, (2.5)

where N = 1
2
∑n
i=1Ni(Ni − 1), Ji is the set of 1

2Ni(Ni − 1) distinct pairs (j1, j2) with 1 ≤ j1 <

j2 ≤ N , and we ignore all the observations with Ni = 1. By plugging this estimator into (2.3),

we can estimate the cdf FX∗ by

F̂X∗(t) = 1
2 + 1

N

n∑
i=1

Ni∑
j=1

L̂
(
t−Xi,j

h

)
, where L̂(u) = 1

2π

∫ 1

−1

sin(ωu)
ω

K ft(ω)
f̂ ft
ε (ω/h)

dω. (2.6)

In this section, we are concerned with approximation for the distribution of the maximal

deviation

Tn = sup
t∈T
|F̂X∗(t)− FX∗(t)|, (2.7)

under the sup-norm, where T is a compact interval specified by the researcher. A direct use of

such approximation is construction of the confidence band for FX∗ over T . Several other ways

to use this approximation are presented in Section 5.

2.2. Bootstrap approximation. In this section, we consider a bootstrap approximation for

the distribution of Tn. To construct the bootstrap counterpart of Tn, we suggest resampling

from the set of observed variables {Xi,j} while keeping the estimated measurement error density

f̂ ft
ε the same. More precisely, the bootstrap version of F̂X∗ is given by

F̂#
X∗(t) = 1

2 + 1
N

n∑
i=1

Ni∑
j=1

L̂

 t−X#
i,j

h

 , (2.8)

where X#
i,j is randomly drawn from the pooled observations {Xi,j} with equal weights. Then

the bootstrap counterpart of Tn is obtained as T#
n = supt∈T |F̂

#
X∗(t)− F̂X∗(t)|.

To establish validity of the bootstrap approximation, we impose the following assumptions.

Assumption C. (i) {Xi,j}ni=1 is an i.i.d. sample from Xi,j = X∗i + εi,j for j = 1, . . . , Ni, where

Ni ≤ C <∞ for all i. X∗i and εi,j are independent for all i and j. (ii) The densities fX , fX∗,

and fε are bounded and continuous on R, and inft∈T δ fX(t) > c for some c > 0 and δ-expansion

T δ of T . Also, E|X∗| < ∞ and E|ε| < ∞. (iii) supω∈R{(1 + |ω|)γ |f ft
X∗(ω)|} < C for some

γ,C > 0. (iv) f ft
ε (ω) 6= 0 for all ω ∈ R, f ft

ε (ω) is differentiable at all ω ∈ R, and fε is an even

function. (v) There exist c ∈ (0, 1) and C > 0 such that P{|ε| ≥ M} ≤ C(logM)−1/c for all

M > 0.
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Assumption C (i) is on the setup wherein we assume that ε is a classical measurement error.2

Assumption C (ii) is mild but excludes the Cauchy measurement error. This assumption is re-

quired for characterizing the bias of the estimator (see, e.g., Hall and Lahiri, 2008). The Cauchy

measurement error is also ruled out in van Es and Uh (2005) who show pointwise asymptotic

normality of the deconvolution density estimator. Assumption C (iii), analogous to the so-called

Sobolev condition, is also used to characterize the rate for the bias term. Assumption C (iv)

contains conditions on fε. The first condition is common in the density deconvolution literature

but may be relaxed by taking a ridge approach as in Hall and Meister (2007). The last condition,

symmetry of fε, is used not only to derive the cdf estimator in (2.3) as in Hall and Lahiri (2008)

but also to obtain the estimator of f̂ ft
ε in (2.5). This condition will be relaxed in Section 3.1.

Assumption C (v) is an additional regularity condition on the tail behavior of ε. If fε is known,

this assumption can be dropped.

We now present two classes of assumptions on the tail behavior of fε. The first class of

measurement error densities, called the ordinary smooth densities, are presented as follows.

Assumption OS. (i) There exist β > 1/2 and c, C, ω0 > 0 such that

c|ω|−β ≤ |f ft
ε (ω)| ≤ C|ω|−β,

for all |ω| ≥ ω0. (ii) K is an even function with K ft(ω) = (1−ωq)rI{|ω| ≤ 1} for some q, r ≥ 2.

There exist c1, C1 > 0 such that

n−1/4hβ−1/2
∫
|K(u)|du < C1n

−c1 , (2.9)

for all n large enough. Also, letting K̄(u) = 1
π

∫ 1
0 cos(ωu) Kft(ω)

f ft
ε (ω/h)I{|ω| ≥ hω0}dω, it holds that

hβ−1/2
∫
|K(u)− K̄(u)|du = O(hs), (2.10)

for some s > 0. (iii) As n → ∞, it holds h → 0,
√
nhβ−1/2 → ∞, nνh → 0 for some

ν ∈ (0, 1/2), and n1+2ξh2(β+γ)−1 → 0 for some ξ > 0. (iv) As n→∞, it holds logn/(nh4β)→ 0

and nh4β+1 →∞. Also, γ > β + 1.

Assumption OS (i) is a standard condition to characterize ordinary smooth densities. Note

that we focus on the case of β > 1/2, where the cdf estimator F̂X∗ converges at a nonparamet-

ric rate (Dattner, Goldenshluger and Juditsky, 2011). For example, the Laplace distribution

corresponds to the case of β = 2. Also it is known that if β > 1/2, then fε is bounded and

continuous. For the case of β < 1/2, the estimator F̂X∗ typically converges at the
√
n-rate and a

2The independence assumption between X∗i and εi,j is standard but can be relaxed to the sub-independence
assumption (see, Schennach, 2013). In the context of errors-in-variables regression analysis with repeated mea-
surements, Schennach (2004) and Hu and Sasaki (2015) relaxed the independence assumption for the second and
subsequent measurement errors εi,j with j ≥ 2.
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Donsker-type theorem applies (Söhl and Trabs, 2012). Assumption OS (ii) contains conditions

for the kernel function. The first condition specifies a particular form for K that is commonly

used in the literature (e.g., Delaigle and Hall, 2006). The second condition ensures that the

deconvolution kernel K is L1-integrable. The term n−1/4 in (2.9) is required to ensure that

the bootstrap counterpart T#
n convergences to a Gaussian process at a polynomial rate in n

(see, Lemma 2 in the appendix). If f ft
ε is twice differentiable, applying the integration by parts

formula twice gives

K(u) = 1
u2

∫ 1

0
cos(ωu)

{
K ft(ω)
f ft
ε (ω/h)

}′′
dω,

and a sufficient condition for (2.9) is

n−1/4hβ−1/2 sup
|ω|≤1

∣∣∣∣∣
{
K ft(ω)
f ft
ε (ω/h)

}′′∣∣∣∣∣ = O(n−c1),

for some c1 > 0. The third condition in Assumption OS (ii) assures that K is well approximated

by its trimmed version K̄. Since∫
|K(u)− K̄(u)|du = 1

π

∫ ∣∣∣∣∣
∫ hω0

0
cos(ωu) K

ft(ω)
f ft
ε (ω/h)dω

∣∣∣∣∣ du,
applying the integration by parts formula twice again implies that a sufficient condition for

(2.10) is given by

hβ+1/2 sup
|ω|≤hω0

max
{∣∣∣∣∣
(
K ft(ω)
f ft
ε (ω/h)

)′∣∣∣∣∣ ,
∣∣∣∣∣
(
K ft(ω)
f ft
ε (ω/h)

)′′∣∣∣∣∣
}

= O(hs),

for some s > 0. Based on the above sufficient conditions, it is possible to show that Assumption

OS (ii) is satisfied by a large class of ordinary smooth error distributions including Laplace

and its convolutions. Intuitively, these conditions mean that f ft
ε should not oscillate too wildly

around its trend implied by the ordinary smooth density.

Assumption OS (iii) contains conditions for the bandwidth h. The first condition, h→ 0, is a

standard requirement for controlling the smoothing bias. The second condition,
√
nhβ−1/2 →∞,

is imposed to ensure the variance goes to zero. The third condition, nνh → 0, is a technical

condition on the bandwidth to ensure that it is not too large; this is easily satisfied for the

undersmoothing bandwidth choice. Finally the last condition, n1+2ξh2(β+γ)−1 → 0, ensures that

the bandwidth is undersmoothed relative to the MSE optimal choice, which is h ∝ n1/2(β+γ)−1

(see, Hall and Lahiri, 2008). For example, if h ∝ n−a, then these conditions are satisfied with

a ∈
(
max

{
1+2ξ

2β−1+2γ , ν
}
, 1

2β−1

)
, which typically holds true by choosing ξ and ν small enough.

Finally, Assumption OS (iv) lists additional conditions to deal with the case of unknown

fε. The requirement γ > β + 1 says that fX∗ is smoother than fε by up to a derivative. As
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shown in Lemma 2 in the appendix, this ensures that the error from estimating f ft
ε is asymp-

totically negligible. Also, we note that the conditions nh4β+1 → ∞ (Assumption C (iv)) and

n1+2ξh2(β+γ)−1 → 0 for some ξ > 0 (Assumption OS (iii)) hold simultaneously only if γ > β+ 1.

Delaigle, Hall and Meister (2008) imposed a similar condition to obtain the MSE optimal esti-

mator of fX∗ under repeated measurements. They also showed that when the converse holds

(i.e, γ < β + 1), the estimation error of f ft
ε dominates that of f∗X , and the estimator f̂ ft

ε for f ft
ε

given in (2.5) is no longer optimal (see, p. 673 of Delaigle, Hall and Meister, 2008). The same

comment applies when f∗X is ordinary smooth but fε is super smooth.

The second class of measurement error densities, called the super smooth densities, are pre-

sented as follows.

Assumption SS. (i) There exist µ, c, C, ω0, λ > 0 and λ0 ∈ R such that

c|ω|λ0 exp(−|ω|λ/µ) ≤ |f ft
ε (ω)| ≤ C|ω|λ0 exp(−|ω|λ/µ),

for all |ω| ≥ ω0. (ii) K is an even function with K ft(ω) = (1−ωq)rI{|ω| ≤ 1} for some q, r ≥ 2.

There exist µ1 > 2µ and c1, C1 <∞ such that

1
ς(h)

∫
|K(u)|du < C1h

−c1 exp
( 1
µ1hλ

)
, (2.11)

for all n large enough, where

ς(h) = hϑ exp
( 1
µhλ

)
(2.12)

with ϑ = λ(r + 1/2) + λ0 + 1/2. Also, letting K̄(u) = 1
π

∫ 1
0 cos(ωu) Kft(ω)

f ft
ε (ω/h)I{|ω| ≥ hω0}dω, it

holds that
1
ς(h)

∫
|K(u)− K̄(u)|du = O(n−s), (2.13)

for some s > 0. (iii) h =
(µ

2 logn+ µϑ1 log logn
)−1/λ for some ϑ1 ∈ ((ϑ− γ)/λ+ 1, ϑ/λ). (iv)

ϑ1 < 2λ0/λ and
∫
|ωaf ft

X∗(ω)/f ft
ε (ω)|2dω <∞ for some a > ϑ− λ0 + 1.

Assumption SS (i) is a standard condition to characterize super smooth densities. Assumption

SS (ii) contains conditions on the kernel function, and similar comments apply as for the ordinary

smooth case. The condition µ1 > 2µ is required to guarantee that the bootstrap counterpart T#
n

convergences to a Gaussian process at a polynomial rate in n (see Lemma 9 in the appendix).

If f ft
ε is twice differentiable, a sufficient condition for (2.11) is

1
ς(h) sup

|ω|≤1

∣∣∣∣∣
(
K ft(ω)
f ft
ε (ω/h)

)′′∣∣∣∣∣ = O

(
h−a exp

( 1
µ1hλ

))
,
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for some a > 0. Also, a sufficient condition for (2.13) is

exp
(
− 1
µhλ

)
sup
|ω|≤hω0

max
{∣∣∣∣∣
(
K ft(ω)
f ft
ε (ω/h)

)′∣∣∣∣∣ ,
∣∣∣∣∣
(
K ft(ω)
f ft
ε (ω/h)

)′′∣∣∣∣∣
}

= O(n−a1),

for some a1 > 0. For instance, these conditions are satisfied if

sup
|ω|≤1

max{|A′(ω/h)|, |A′′(ω/h)|} = O

(
h−a1 exp

( 1
µ1hλ

))
, (2.14)

for some a1 > 0, where A(ω) = exp(−|ω|λ/µ)
f ft
ε (ω) . Based on (2.14), we can see that Assumption SS

(ii) is satisfied by a large class of super smooth error distributions including Gaussian and its

convolutions. Since the function A inherits the differentiability properties of f ft
ε , the condition

(2.14) intuitively means that f ft
ε should not oscillate too wildly around its trend implied by the

super smooth density.

Assumption SS (iii) is on the bandwidth h. Compared to the ordinary smooth case, we need

stricter conditions on the bandwidth to ensure the bias decays to 0 faster than the variance.

Note that the MSE optimal bandwidth choice in this instance is h ∝ (logn)−1/λ; the additional

constants and the (log logn) term are needed to ensure undersmoothing. We also note that the

condition on ϑ1 implicitly demands that γ > λ to ensure that the interval for ϑ1 is non-empty.

The lower bound for ϑ1 is derived from the condition for undersmoothing (see discussion above

Lemma 11 in the appendix), which demands that the bias decay to 0 at a rate faster than logn,

i.e.,
√
nhγ

ς(h) = O(logn)−c for some c > 1. Indeed, by the definition of ς(h) and the expression of

h in Assumption SS (iii) , we have
√
nhγ

ς(h) (logn)c ∼
(µ

2
) γ−ϑ

λ (logn)
γ−ϑ
λ

+ϑ1+c, which implies the

lower bound on ϑ1. The upper bound on ϑ1 is obtained by the requirement that
√
n/ς(h)→ 0

so as to ensure the variance decays to 0.

Finally, Assumption SS (iv) lists additional conditions to deal with the case of unknown fε.

Let ĉα denote the (1−α)-th quantile of the bootstrap statistic T#
n . Under the above assump-

tions, asymptotic validity of the bootstrap approximation is established as follows.3

Theorem 1. Suppose that Assumptions C and either OS or SS hold. Then

P{Tn ≤ ĉα} ≥ 1− α− o(1). (2.15)

Remark 1. Based on this theorem, we can construct an asymptotic confidence band for FX∗

over T with level α as [F̂X∗(t) ± ĉα] for t ∈ T . To implement the bootstrap approximation

in this theorem, we need to choose the bandwidth h. For estimation of the cdf FX∗(t0) at a

3Here, we present bootstrap approximation results for the statistic Tn which decays to zero. Alternatively, we
could have normalized Tn without affecting any of the conclusions. This is analogous to whether we present the
bootstrap approximation for the non-normalized object θ̂ − θ or the normalized one

√
n(θ̂ − θ), where θ is some

parameter and θ̂ its estimator.
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given t0, Hall and Lahiri (2008) suggested choosing h to minimize the approximate integrated

MSE based on the normal reference distribution on X∗. For estimation of the quantile function

of X∗, Dattner, Reiß and Trabs (2016) developed an adaptive method to choose h based on

Lepski’s (1990) method. In Section 6 for simulations, we suggest a bandwidth selection rule

based on Bissantz, Dümbgen, Holzmann and Munk (2007). The basic idea is to estimate the

ideal bandwidth that minimizes the maximal deviation between F̂X∗ and FX∗ under the sup-

norm by utilizing a series of estimates F̂X∗ based on different values of h.

Remark 2. Theorem 1 says that the approximation error on the right hand side of (2.15) is

of order o(1). On the other hand, Theorem 3 below for the case of known fε provides more

accurate orders. The main obstacle for obtaining an accurate order of the approximation error

in the present setup is that the contrast F̂X∗(t) − F̃X∗(t) arising from the estimation of fε is

currently bounded by a stochastic term (see Lemma 2) rather than a deterministic one.

3. Extensions

3.1. Possibly asymmetric measurement error distribution. In this section, we extend our

bootstrap inference method in Section 2 to the case where the measurement error density fε is

unknown and possibly asymmetric around zero. In particular, by using repeated measurements,

we estimate f ft
ε by a nonparametric deconvolution estimator in Comte and Kappus (2015), which

is a modified version of Li and Vuong’s (1998) estimator based on Kotlarski’s identify. Then we

argue that an adjusted version of our bootstrap approach using subsamples can be applied to

conduct valid inference. Although this method works under more general situations than the

one in the last section, we need to discard some data to estimate FX∗ to achieve the asymptotic

validity of our bootstrap method.

Let us introduce some notation. For possibly asymmetric fε, integration of f̃X∗ in (2.2) yields

the following estimator for FX∗ (Dattner, Goldenshluger and Juditsky, 2011)

F̃AX∗(t) = 1
2 −

1
n

n∑
i=1

LA
(
t−Xi

h

)
, where LA(u) = 1

π

∫ 1

0

1
ω

Im
[

e−iωu

f ft
ε (ω/h)

]
K ft(ω)dω, (3.1)

where Im[·] stands for the imaginary part. If fε is symmetric, this definition coincides with the

one in (2.3). We consider a feasible version of F̃AX∗ by estimating f ft
ε in (3.1).

To simplify the presentation, we concentrate on the case where two repeated measurements

on X∗ are available, i.e., set Ni = 2 in (2.1). Let ψ̂(ω1,, ω2) = 1
n

∑n
i=1 e

iω1Xi,1+iω2Xi,2 be the

empirical characteristic function of the observables. Li and Vuong (1998) proposed to estimate

f ft
ε by

f̂ ft
ε,LV (ω) = ψ̂(ω, 0)

ϕ̂LV (ω) , where ϕ̂LV (ω) = exp
∫ ω

0

∂ψ̂(0, ω2)/∂ω1

ψ̂(0, ω2)
dω2. (3.2)
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Although the uniform convergence rate of f̂ ft
ε,LV is known in the literature (Li and Vuong, 1998,

for the bounded support case, and Kurisu and Otsu, 2019, for a general case), our theoretical

development for the validity of bootstrap inference also requires certain L2 convergence results

(as in Lemmas 4 and 5 in the appendix). The L2 convergence rate of Li and Vuong’s (1998)

estimator is an open problem, and here we consider a modified version of Li and Vuong (1998)

proposed by Comte and Kappus (2015) (say, f̌ ft
ε ). The basic idea of Comte and Kappus (2015)

is to regularize ϕ̂LV (ω) as

ϕ̂KP (ω) = exp
∫ ω

0

∂ψ̂(0, ω2)/∂ω1

ψ̌(0, ω2)
dω2, with ψ̌(0, ω2) = ψ̂(0, ω2)

min{1,
√
n|ψ̂(0, ω2)|}

,

where the term, min{1,
√
n|ψ̂(0, ω2)|}, circumvents unfavorable effects caused by small values of

the denominator of f̂ ft
ε,LV . Based on this, Comte and Kappus’ (2015) estimator f ft

ε is defined as

f̌ ft
ε (ω) = ψ̂(ω, 0)

ϕ̌(ω) , (3.3)

where ϕ̌(ω) = ϕ̌1(ω)
min{1,

√
n|ϕ̌1(ω)|} and ϕ̌1(ω) = ϕ̂KP (ω)

max{1,|ϕ̂KP (ω)|} . The additional regularization term,

max{1, |ϕ̂KP (ω)|}, is introduced to improve the quality of the estimator by imposing the fact

that the estimand is a characteristic function, which should not take values larger than one.

Comte and Kappus (2015) and Kurisu and Otsu (2019) derived the L2 and uniform convergence

rates of f̌ ft
ε , respectively, under mild conditions allowing unbounded support for X∗ and ε.

We first consider the estimator of the cdf FX∗ by plugging f̌ ft
ε into F̃AX∗ in (3.1):

F̌X∗(t) = 1
2−

1
n

n∑
i=1

1
2

2∑
j=1

Ľ
(
t−Xi,j

h

)
, where Ľ(u) = 1

π

∫ 1

0

1
ω

Im
[

e−iωu

f̌ ft
ε (ω/h)

]
K ft(ω)dω. (3.4)

To extend our bootstrap approach in Section 2, we utilize the uniform convergence results of

f̌ ft
ε in Kurisu and Otsu (2019), and impose the following conditions.

Assumption C’. (i) f ft
ε (ω) 6= 0 for all ω ∈ R, E[ε] = 0, and E[|X1,1|2+ζ ] <∞ for some ζ > 0.

Assumption OS’. (i) There exist γ > 1/2 and cx, Cx, ωx > 0 such that

cx|ω|−γ ≤ |f ft
X∗(ω)| ≤ Cx|ω|−γ ,

for all |ω| ≥ ωx.

Assumption SS’. (i) There exist µx, cx, Cx, ωx, λx > 0 and λ0x ∈ R such that

cx|ω|λ0x exp(−|ω|λx/µx) ≤ |f ft
X∗(ω)| ≤ Cx|ω|λ0x exp(−|ω|λx/µx),

for all |ω| ≥ ωx.
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The assumption E[ε] = 0 is employed to identify f ft
ε by Kotlarski’s identity (Li and Vuong,

1998), and E[|X1,1|2+ζ ] <∞ is an additional condition to apply the results in Kurisu and Otsu

(2019). Since the estimator f̌ ft
ε is defined by the ratios of the (regularized) empirical averages,

we introduce the lower and upper bounds of the characteristic function f ft
X∗ , as in Assumptions

OS’ (i) and SS’ (i), to control the estimation error in f̌ ft
ε . By applying Kurisu and Otsu (2019),

the uniform convergence rates of f̌ ft
ε are obtained as follows.

Lemma 1. [Adaptation of Kurisu and Otsu (2019)]

(i): Under Assumptions C (i)-(ii), C’ (i), OS (i), and OS’ (i), it holds

sup
ω∈[−h−1,h−1]

|f̌ ft
ε (ω)− f ft

ε (ω)| = Op
(
n−1/2h−3γ−2β−1 log h−1

)
.

(ii): Under Assumptions C (i)-(ii), C’ (i), SS (i), and SS’ (i), it holds

sup
ω∈[−h−1,h−1]

|f̌ ft
ε (ω)− f ft

ε (ω)| = Op

(
n−1/2h−1+3λ0x+2λ0(log h−1) exp

(
3h−λx
µx

+ 2h−λ

µ

))
.

Note that this lemma does not require fε to be symmetric. The above rates are typically faster

than the ones in Li and Vuong (1998) or Bonhomme and Robin (2010). However, they are still

too slow to adapt the bootstrap approach in Section 2. For example, for the ordinary smooth

case, the main term supt∈T |F̃AX∗(t)−FX∗(t)| is of order Op(n−1/2h−β+1/2) (see Lemma 6 in the

appendix), which is faster than the uniform rate in Lemma 1 (i). Thus, the bootstrap approach

proposed in the last section cannot be directly applied to the object supt∈T |F̌X∗(t)− FX∗(t)|.

To deal with this issue, we consider the following modified version of F̌X∗ :

F̌AX∗(t) = 1
2 −

1
m

m∑
i=1

1
2

2∑
j=1

Ľ
(
t−Xi,j

h

)
, (3.5)

where {Xi,1, Xi,2}mi=1 is a subsample of sizem < n from the original one. Note that f̌ ft
ε appearing

in the construction of Ľ(·) is computed based on the full sample of size n. By suitably choosing

m, the main term supt∈T |F̃AX∗(t) − FX∗(t)| using the subsample will dominate the estimation

error of f̌ ft
ε using the full sample.

In this subsection, we use the following assumptions. For any (complex-valued) function on

R, let ‖f‖p = (
∫
R |f(x)|pdx)1/p for p > 0.

Assumption C’. (ii) f ft
ε (ω) is differentiable at all ω ∈ R. (iii) There exists a positive integer

p > 2 such that

(‖f ft′′
X∗f

ft
ε ‖1 + ‖E[ε2]f ft

X∗f
ft
ε ‖1 + ‖f ft′

X∗f
ft
ε ‖22)p + E[|X1,1|4p] ≤ C1,

12



for some C1 > 0, where f ft′
X∗ and f ft′′

X∗ are the first and second derivatives of f ft
X∗. (iv) The

characteristic function ψ(ω1, ω2) = E[ei(ω1X1,1+ω2X1,2)] satisfies ‖∂ logψ(0, ·)/∂ω1‖2 ≤ C2 for

some C2 > 0.

The (square) integrability conditions on f ft
X∗ , f ft

ε and ∂ logψ(0, ·)/∂ω1 are mild. Additional

conditions, also assumed in Comte and Kappus (2015), are imposed to control the weighted L2

risk for f̌ ft
ε (see Lemma 4 in the appendix).

Assumption OS’. (ii) Assumption OS (ii) holds true after replacing n with m in (2.9), (iii)

As m → ∞, it holds h → 0,
√
mhβ−1/2 → ∞, mνh → 0 for some ν ∈ (0, 1/2), and

m1+2ξh2(β+γ)−1 → 0 for some ξ > 0, (iv) There exists a positive integer p > 2 such that

np−2h(2β+2γ+1)(p−1)+2γ →∞ as n→∞. (v) n−1/2h−3γ−3β−1 log h−1 → 0 as n→∞.

Assumption SS’. (ii) Assumption SS (ii) holds true after replacing n with m in (2.13). Also,

Assumption SS (iii)-(iv) hold true. (iii) There exists a positive integer p > 2 such that

np−2h−2λ0x−(p−1)(2λ0x+2λ0−[(1−λ)∨0]) exp
(

(−4(p− 1) + 2)h−λ

µx ∧ µ

)
→∞ as n→∞.

(iv) n−1/2h−1+3λ0x+3λ0(log h−1) exp
(

3h−λx
µx

+ 3h−λ
µ

)
→ 0 as n→∞.

These assumptions are modifications of Assumptions OS and SS for the subsample-based

statistic F̌AX∗ . For example, if m = nb with 0 < b < 1 and h = n−a with a > 0, Assumption

OS’ (iii) is satisfied when 0 < a < 1
2(3γ+3β+1) and 0 < b < 2γ+2β−1

2(3γ+3β+1) . We use Assumptions

OS’ (iv) and SS’ (iii) to simplify the results of Lemmas 4 and 5 in the appendix, which provide

the wighted L2 risk of f̌ ft
ε . Assumptions OS’ (v) and SS’ (iv) are imposed to show the uniform

consistency of |f ft
ε (ω)/f̌ ft

ε (ω)| on [−h−1, h−1].

Let TAn = supt∈T |F̌AX∗(t) − FX∗(t)|, and ĉAα denote the (1 − α)-th quantile of the bootstrap

statistic TA#
n = supt∈T |F̌

A#
X∗ (t)− F̌AX∗(t)|, where

F̌A#
X∗ (t) = 1

2 −
1
m

m∑
i=1

1
2

2∑
j=1

Ľ

 t−X#
i,j

h

 .
The validity of our bootstrap procedure is presented as follows.

Theorem 2. Suppose

(i): Assumptions C (i)-(ii) C’, OS (i), and OS’ hold true, and mnζ0−1h2β−2γ−1 → 0 as

n→∞ for some 0 < ζ0 < 1, or

(ii): Assumptions C (i)-(ii) C’, SS (i), and SS’ hold true, andmnζ1−1(logn)2r+1(log logn)2 →

0 as n→∞ for some 0 < ζ1 < 1.

Then

P{TAn ≤ ĉAα} ≥ 1− α− o(1). (3.6)
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The same comments to Theorem 2 apply. For example, we can construct an asymptotic

confidence band for FX∗ over T with level α as [F̌AX∗(t)± ĉAα ] for t ∈ T .

3.2. Case of directly observable measurement errors. In some applications, a separate

independent experiment may give us direct observations from fε (see, e.g., Efromovich, 1997,

and Neumann, 1997). If we have ` independent observations (ε1, . . . , ε`) from fε, the Fourier

transform f ft
ε can be estimated as

f̄ ft
ε (t) = 1

`

∑̀
i=1

exp(itεi).

We may use this estimator to obtain an estimator for FX∗ by replacing f ft
ε in (2.3) with f̄ ft

ε . A

bootstrap counterpart can be constructed as in (2.8) by replacing f̂ ft
ε with f̄ ft

ε . The asymptotic

validity of such bootstrap approximation can be established by replacing Assumption OS (iv)

with the following one.

Assumption OS. (iv)’ As n→∞, it holds `→∞,
√

(n/`)hβ−1/2 log(1/h)→ 0 and logn/(`h4β)→

0.

For the case of super smooth fε, we can supplement Assumption SS with the following con-

dition on `.

Assumption SS. (v) As n→∞, it holds `/n→ a for some a ∈ (0, 1).

The formal proof for validity of the resulting bootstrap follows by analogous arguments as in

the proof of Theorem 1, and is therefore omitted.

4. Case of known measurement error distribution

In this section, we present additional theoretical results on the asymptotic properties of the

cdf estimator F̃X∗ in (2.3) for the case of known measurement error distribution. The results in

this section are building blocks for our main result in Theorem 1. Also, the results here are new

in the statistics literature on nonparametric deconvolution methods, and are of interest in their

own right.

This section is concerned with approximation for the distribution of the maximal deviation

Sn = sup
t∈T
|F̃X∗(t)− FX∗(t)|, (4.1)

under the sup-norm, where T is a compact interval specified by the researcher.

We first establish asymptotic validity of a bootstrap approximation for Sn. Consider a non-

parametric bootstrap resample {X#
i }ni=1 from {Xi}ni=1 with equal weights. The bootstrap coun-

terpart of Sn is given by S#
n = supt∈T |F̃

#
X∗(t)− F̃X∗(t)|, where F̃

#
X∗ is defined as in (2.3) using

14



X#
i . Let c̃α denote the (1 − α)-th quantile of the bootstrap statistic T#

n . The validity of the

bootstrap approximation is established as follows.

Theorem 3. Suppose that Assumption C (i)-(iv) holds true. Then

P{Sn ≤ c̃α} ≥ 1− α− δn, (4.2)

for some positive sequence δn = O(n−c) (under Assumption OS (i)-(iii)) or δn = O((logn)−c)

(under Assumption SS (i)-(iii)) with c > 0.

Remark 3. Based on this theorem, we can construct an asymptotic confidence band for FX∗

over T with level α as Cn(t) = [F̃X∗(t)± c̃α] for t ∈ T , which satisfies

P{FX∗(t) ∈ Cn(t) for all t ∈ T } ≥ 1− α− δn,

for δn = O(n−c) (under Assumption OS (i)-(iii)) or δn = O((logn)−c) (under Assumption SS

(i)-(iii)) with some c > 0. The approximation error δn provides bounds on the extent of the

discrepancy in size (from a nominal level of α) when using the bootstrap critical values. We note

that this is distinct from the convergence rate of the cdf estimator F̃X∗ . We can see that δn is

of polynomial order under Assumption OS (the ordinary smooth case), and of logarithmic order

under Assumption SS (the super smooth case). We also note from the proof of the theorem that

the slower approximation rate of δn for the super-smooth case is solely due to the estimation

bias for FX∗(t); if bias correction were possible, the bootstrap approximation error would be of

polynomial order in both cases. This is so even as the variance of the cdf estimator F̃X∗ itself

goes to 0 at a logarithmic rate.

4.1. Asymptotic Gumbel approximation for ordinary smooth case. For the ordinary

smooth case, it is also possible to characterize the asymptotic distribution of the standardized

object

sn =
√
nh2β−1 sup

t∈T
|fX(t)−1/2{F̃X∗(t)− FX∗(t)}|, (4.3)

using the Gumbel distribution. Note that to obtain sn, we normalize the discrepancy F̃X∗(t)−

FX∗(t) by fX(t)−1/2, the density function of the mismeasured data X.4 Such normalization by

fX(t)−1/2 also appears in the case of the deconvolution density estimator for fX∗ over t ∈ T

(Bissantz, Dümbgen, Holzmann and Munk, 2007). Under additional assumptions, listed in

Assumption G in Appendix C, we can follow similar steps as in Bickel and Rosenblatt (1973)

and Bissantz, Dümbgen, Holzmann and Munk (2007) to show the following result.

4The reason for this is that the empirical distribution, which is used to sum up the observations to compute F̃X∗ ,
is based on the cdf FX of the observed data X.
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Theorem 4. Suppose that Assumptions C (i)-(iv), OS (i)-(iii), and G hold, and (nh)−1(logn)3 →

0 as n→∞. Then

P
{

(−2 log h)1/2(B−1/2sn − bn) ≤ c
}
→ exp(−2 exp(−c)), (4.4)

for all c ∈ R, where the constant B and sequence bn are defined in Appendix C (eq. (C.2)).

See Appendix C for a detailed discussion of Assumption G and for the proof of this theorem.

Remark 4. As shown in (4.4), the limiting behavior of sn is characterized by the Gumbel dis-

tribution. Also based on this theorem, we can see that the convergence rate of supt∈T |F̃X∗(t)−

FX∗(t)| is of order n−1/2h−β+1/2√log h−1. Note that in analogous setups, the convergence rate of

supt∈T |f̃X∗(t)−fX∗(t)| for the deconvolution pdf estimator in (2.2) is of order n−1/2h−β−1/2√log h−1

(see, Theorem 1 in Bissantz, Dümbgen, Holzmann and Munk, 2007, and Corollary 1 in Kato

and Sasaki, 2018). Thus, the uniform convergence rate of the cdf estimator is faster than that

of the pdf estimator by the factor of h. See Dattner, Goldenshluger and Juditsky (2011) for

analogous results on the minimax rate for pointwise estimation problems for a given t.

Remark 5. Based on (4.4), and the conventional kernel density estimator f̂X for fX , we can also

obtain an asymptotically valid critical value to conduct inference. For example, the asymptotic

confidence band at level α for FX∗ is given by

CGn (t) =

F̃X∗(t)±
√
Bf̂X(t)
nh2β−1 {c

G
α (−2 log h)−1/2 + bn}

 ,
for t ∈ T , where cGα solves exp(−2 exp(−cGα )) = α. However, as discussed in the next remark,

the asymptotic Gumbel approximation requires additional assumptions and tends to be less

accurate than the bootstrap approximation.

Remark 6. Compared to the bootstrap approximation, the asymptotic Gumbel approxima-

tion has two drawbacks. First, the Gumbel approximation requires an additional assumption

(Assumption G). Second, as indicated by Bissantz, Dümbgen, Holzmann and Munk (2007), the

approximation error (i.e., δn in (4.2) for the bootstrap approximation) given by (4.4) is typ-

ically a logarithmic rate even under Assumption OS, and therefore tends to be less accurate

than the bootstrap approximation in (4.2). This contrast between the asymptotic Gumbel and

bootstrap approximations was first clarified by Chernozhukov, Chetverikov and Kato (2014) for

construction of confidence bands on the density with no measurement error. Kato and Sasaki

(2018) extended their results for confidence bands on the pdf fX∗ with unknown fε. We ob-

tain analogous results for confidence bands on the cdf FX∗ . We also note that in contrast to
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Chernozhukov, Chetverikov and Kato (2014) and Kato and Sasaki (2018) who employed Gauss-

ian multiplier bootstrap methods, Theorem 3 shows validity of the conventional nonparametric

bootstrap. Accordingly, the techniques used in the proof of Theorem 3 are quite different: in par-

ticular, we employ Komlós, Major and Tusnády’s (1975) coupling along with anti-concentration

inequalities for Gaussian processes (Chernozhukov, Chetverikov and Kato, 2015) while the latter

employ the Slepian-Stein type coupling for suprema of empirical processes constructed in Cher-

nozhukov, Chetverikov and Kato (2014). Finally, we also obtain deterministic bounds on the

approximation error of the bootstrap; to the best of our knowledge this is new in the literature

on deconvolution.

Remark 7. We note that the asymptotic Gumbel approximation in (4.4) is available only for the

ordinary smooth case. It remains an open question whether we can establish such an asymptotic

approximation for the super smooth case. As discussed in Bissantz, Dümbgen, Holzmann and

Munk (2007, p. 486) for density deconvolution, the main difficulty is that the limiting form of

the deconvolution kernel (eq. (C.1) in Appendix C) is not available for the super smooth case.

On the other hand, as shown in Theorem 3, we emphasize that the bootstrap approximation is

valid even for the super smooth case.

5. Applications

5.1. Confidence band for quantile function. In addition to the confidence band for FX∗ ,

the results in the previous sections can be utilized to obtain the confidence band for the quantile

function of X∗. Hall and Lahiri (2008) proposed estimating the u-th quantile Q(u) = F−1
X∗ (u)

by

Q̃(u) = sup{t : F̃m
X∗(t) ≤ u},

where F̃m
X∗(t) = supy≤t F̃X∗(y) is a monotone version of F̃X∗(t). To obtain the confidence band

for the quantile function Q(u) over some interval [u1, u2], we impose the following assumptions.

Assumption Q. (i) F−1
X∗ (u) exists and is unique for all u ∈ [u1, u2] such that 0 < u1 < u2 < 1.

There exists an interval H satisfying F−1
X∗ [u1− ε, u2 + ε] ⊂ H for some ε > 0, infx∈H fX(x) > 0,

and 0 < infx∈H fX∗(x) ≤ supx∈H fX∗(x) < ∞. (ii) supx∈H |fX∗(x + δ) − fX∗(x)| ≤ M |δ|a for

all δ sufficiently small, with a > 0 (under Assumption OS) and a = 1 (under Assumption SS).

Based on these assumptions, we can obtain the asymptotic confidence bands for the quantile

function as follows.

Theorem 5. Suppose that Assumptions C, Q, and either OS or SS hold true. Then,

P

{
Q̃(u)− c̃α

f̃X∗(Q̃(u))
≤ Q(u) ≤ Q̃(u) + c̃α

f̃X∗(Q̃(u))
for all u ∈ [u1, u2]

}
≥ 1− α− o(1).
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Remark 8. For the case of known fε, Dattner, Reiß and Trabs (2016) obtained the uniform

convergence rate of their quantile estimator, say Q̄(u), based on the M-estimation method. In

particular, Dattner, Reiß and Trabs (2016, Proposition 2.6) obtained that under an MSE optimal

choice of the bandwidth,

sup
u∈[u1,u2]

|Q̄(u)−Q(u)| = Op

(( logn
n

) γ
2(β+γ)−1

)
.

Thus, Theorem 5 is complementary in that it provides a confidence band for Q(u) over u ∈

[u1, u2]. Note that as with the case of the cdf, we require under-smoothing to obtain the

asymptotically valid confidence band, which excludes the MSE optimal bandwidth.

5.2. Goodness-of-fit testing. Another useful application of our results is goodness-of-fit test-

ing on parametric models for FX∗ . Consider a parametric model {GX∗(·, θ) : θ ∈ Θ} for the

distribution of the error-free variable X∗ of interest. For simplicity, suppose the measurement

error density fε is known as in Section 4. Our method can be adapted to the case of unknown

fε. The goodness-of-fit testing problem of our interest is

H0 : FX∗(t) = GX∗(t, θ) over t ∈ T for some θ ∈ Θ,

against negation of H0. Let θ̂ be some
√
n-consistent estimator of the true parameter θ0 under

H0. A typical example of θ̂ is the maximum likelihood estimator using the density function∫
gX∗(t− a, θ)fε(a)da on the observable X, where gX∗ is the density of GX∗ .

To test H0, we can employ the Kolmogorov-type statistic

Kn = sup
t∈T
|F̃X∗(t)−GX∗(t, θ̂)|,

and its bootstrap counterpart is given by

K#
n = sup

t∈T
|F̃#
X∗(t)−GX∗(t, θ̂

#)|,

where F̃#
X∗ and θ̂# are computed by the (parametric) bootstrap resample {X#

i }ni=1 from X# =

X#
∗ + ε# with X#

∗ ∼ GX∗(·, θ̂) and ε# ∼ fε. In contrast to the no measurement error case, the

cdf estimator F̃X∗ converges at a slower rate than
√
n. Therefore, if θ̂ is

√
n-consistent, then

the estimation error of θ̂ is negligible under H0, and the validity of the bootstrap critical value

follows by a modification of the proof of Theorem 3. The result is summarized in the following

corollary. Let c̃Kα be the (1− α)-th quantile of K#
n .

Corollary 1. Suppose that Assumption C (i)-(iv) holds true, the null H0 is satisfied at θ0,
√
n(θ̂ − θ0) = Op(1), and the density of GX∗(·, θ) is bounded for all θ in a neighborhood of θ0.
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Then

P{Kn > c̃Kα } ≤ α+ δn,

for some positive sequence δn = O(n−c) (under Assumption OS (i)-(iii)) or δn = O((logn)−c)

(under Assumption SS (i)-(iii)) with c > 0.

Consistency of the test can be shown analogously. If fε is unknown but repeated measurements

on X∗ are available, an analogous result holds true by replacing F̃X∗ and F̃#
X∗ with F̂X∗ and

F̂#
X∗ , respectively.

5.3. Homogeneity test. Our bootstrap and asymptotic approximation results can be extended

to two sample problems. Let {Xi}ni=1 and {Yi}mi=1 be two independent samples of X and Y . X

is generated as in (2.1). Also Y is generated as

Y = Y ∗ + δ,

where Y ∗ is the unobservable error-free variable with the distribution function FY ∗ and δ is its

measurement error. We assume δ is independent of Y ∗. Suppose we wish to test the homogeneity

hypothesis

H0 : FX∗(t) = FY ∗(t) for all t ∈ T ,

against the negation of H0. The Kolmogorov-type statistic presented in the last subsection can

be modified as follows

Sn,m = sup
t∈T
|F̃X∗(t)− F̃Y ∗(t)|,

where F̃Y ∗ is the estimator for FY ∗as in (2.3) using the sample {Yi}mi=1. In this case, the

bootstrap counterpart of Sn,m is given by

S#
n,m = sup

t∈T

∣∣∣F̃#
X∗(t)− F̃

#
Y ∗(t)− {F̃X∗(t)− F̃Y ∗(t)}

∣∣∣ ,
where F̃#

Y ∗ , obtained for the sample {Yi}mi=1, is defined in the same manner as F̃#
X∗ . The (1−α)-th

quantile c̃Sα of S#
n,m provides an asymptotically valid critical value as follows.

Corollary 2. Suppose that Assumption C (i)-(iv) holds true for both X = X∗+ε and Y = Y ∗+δ,

and that n/(n+m)→ τ ∈ (0, 1) as n,m→∞. Then under H0,

P{Sn,m > c̃Sα} ≤ α+ δn,m,

for some positive sequence δn,m = O(n−c) (under Assumption OS (i)-(iii) for both ε and δ) or

δn,m = O((logn)−c) (under Assumption SS (i)-(iii) for both ε and δ) with c > 0.

An analogous result is available for the case of unknown fε by replacing F̃X∗ and F̃Y ∗ with

their estimated versions. Also, if we wish to test the homogeneity hypothesis H0 but Y has no
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measurement error (i.e., Y = Y ∗), we can replace F̃Y ∗ with the empirical distribution function

of the sample {Yi}mi=1.

5.4. Stochastic dominance test. Another intriguing application of our main results is testing

the hypothesis of the (first-order) stochastic dominance

H0 : FX∗(t) ≤ FY ∗(t) for all t ∈ T , (5.1)

against the negation of H0. By modifying the Kolmogorov-type test in Section 5.3, the test

statistic for (5.1) and its bootstrap counterpart are given by

Dn,m = sup
t∈T
{F̃X∗(t)− F̃Y ∗(t)},

D#
n,m = sup

t∈T

{
F̃#
X (t)− F̃#

Y (t)− {F̃X(t)− F̃Y (t)}
}
,

where F̃#
X and F̃#

Y are computed as in (2.3) using nonparametric bootstrap resamples {X#
i }ni=1

and {Y #
i }mi=1 from {Xi}ni=1 and {Yi}mi=1, respectively.

Let c̃Dα denote the (1−α)-th quantile of the bootstrap statistic D#
n,m. The bootstrap validity

of our stochastic dominance test is established as follows.

Theorem 6. Suppose that Assumption C (i)-(iv) holds true for both X = X∗+ε and Y = Y ∗+δ,

and that n/(n+m)→ τ ∈ (0, 1) as n,m→∞.

(i): Under H0,

P{Dn,m > c̃Dα } ≤ α+ %n,m,

for some positive sequence %n,m = O(n−c) (under Assumption OS (i)-(iii) for both ε and

δ) or %n,m = O((logn)−c) (under Assumption SS (i)-(iii) for both ε and δ) with c > 0.

(ii): Let P0 be the set of probability measures of (X,Y ) satisfying H0 (but fδ and fε are

fixed) and

0 < cX ≤ inf
t∈T

fX(t) ≤ sup
t∈T

fX(t) ≤ CX <∞,

0 < cY ≤ inf
t∈T

fY (t) ≤ sup
t∈T

fY (t) ≤ CY <∞,

sup
ω∈R
{(1 + |ω|)γX |f ft

X∗(ω)|} ≤MX <∞,

sup
ω∈R
{(1 + |ω|)γY |f ft

Y ∗(ω)|} ≤MY <∞,

for some cX , cY , γX , γY , CX , CY ,MX ,MY > 0 that are independent of (fX , fY ). Then

sup
P∈P0

P{Dn,m > c̃Dα } ≤ α+ %n,m,
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for some positive sequence %n,m = O(n−c) (under Assumption OS (i)-(iii)) or %n,m =

O((logn)−c) (under Assumption SS (i)-(iii)) with c > 0.

(iii): Under the alternative H1 (i.e., H0 is false) and either Assumption OS (i)-(iii) or SS

(i)-(iii),

P{Dn,m > c̃Dα } → 1.

Remark 9. Based on the proof of Theorem 6 (iii), we can characterize some local power

properties. Suppose that both measurement errors are ordinary smooth. For any sequence

Mn →∞, Dn,m is consistent (i.e., P{Dn,m > c̃Dα } → 1) against local alternatives of the form

H1n : FY ∗(t) > FX∗(t) +Mnγn for some t ∈ T ,

where

γn = n−1/2 max
{
h

1/2−βX
X

√
log(1/hX), h1/2−βY

Y

√
log(1/hY )

}
,

and hX and hY are (possibly different) bandwidths for the estimators F̃X∗ and F̃Y ∗ , respectively.

A similar expression is available for γn in the super smooth case with h
βX−1/2
X and h

βY −1/2
Y

replaced by ς−1
X (hX) and ς−1

Y (hY ) respectively. Finally in the mixed error case, i.e when one of

the errors is ordinary smooth while the other is super-smooth, the value of γn is determined by

the super-smooth error (e.g., γn = n−1/2ςX(hX)
√

log(1/hX) if ε is super-smooth).

6. Simulation

In this section, we investigate the finite sample performance of the bootstrap uniform confi-

dence band discussed in Section 3 using simulation experiments.

6.1. Simulation designs. We generate data from the model (2.1), where the unobserved vari-

able of interest X∗ is drawn from the normal distribution N(0, σ2
X∗) and the measurement error

ε is drawn from the Laplace distribution L(0, σ2
ε) or the normal distribution N(0, σ2

ε). We fix

σX∗ = 1 and choose σε so that the ’signal-to-noise ratio (SNR)’ is given by σX∗/σε = 1, 2, 3.5

We use the kernel function K defined by

K(ω) = 48 cosω
πω4

(
1− 15

ω2

)
− 144 sinω

πω5

(
2− 5

ω2

)
,

whose Fourier transformation is given by K ft(ω) = (1 − ω2)3 · I{|ω| ≤ 1}. We consider four

different sample sizes n = 100, 250, 500, 1000 and three different confidence levels 1 − α =

0.80, 0.90, 0.95. The number of simulation and bootstrap repetitions are 2000 and 1000, respec-

tively. We compute the coverage probabilities of our confidence bands for FX∗ over the interval

[−2σX∗ , 2σX∗ ].
5The signal-to-noise ratio can be also defined as the ratio σX/σε = σX∗/σε + 1. Our definition of SNR follows
from Bissantz, Dümbgen, Holzmann and Munk (2007); see also Kato and Sasaki (2018).
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6.2. Bandwidth choice. We adapt the bandwidth selection method of Bissantz, Dümbgen,

Holzmann and Munk (2007, Section 5.2) to the cdf estimation. It aims at estimating the

bandwidth hopt, which minimizes the L∞-distance between F̃X∗ and the underlying true cdf

FX∗ . First we consider J different bandwidths: hj = h0j/J for j = 1, 2, . . . , J , where h0 is a

pilot bandwidth. A pilot bandwidth is an over-smoothing bandwidth obtained by multiplying

γ > 1 to the normal reference rule of Hall and Lahiri (2008, Section 4.2). The normal reference

rule was originally suggested by Delaigle and Gijbels (2004) to estimate density functions, and

was modified by Hall and Lahiri (2008) to the setting of estimating distribution functions.

For j = 2, . . . , J , define the distances

L∞(F̃X∗ , FX∗) = ||F̃X∗ − FX∗ ||∞, d
(∞)
j−1,j = ||F̃X∗,j−1 − F̃X∗,j ||∞,

where F̃X∗,j denotes the deconvolution estimator (2.3) with bandwidth h = hj and || · ||∞
denotes the supremum norm. For over-smoothing bandwidths h > hopt, L∞(F̃X∗ , FX∗) changes

only moderately with increasing bandwidth, while with undersmoothing bandwidths h < hopt

the distance suddenly increases with decreasing bandwidth. Based on this observation, Bissantz,

Dümbgen, Holzmann and Munk (2007, Section 5.2) suggest to estimate h ≈ hopt by choosing

the largest bandwidth at which d(∞)
j−1,j is more than τ(τ > 1) times greater than d(∞)

J−1,J . In our

simulations, we choose J = 20 (number of bandwidths), τ = 3, and γ = 1.5. (We find that the

simulation results are insensitive to the precise choice of the tuning parameters J , τ , and γ.)

Figures 1 and 2 illustrate the distances over different bandwidths for 3 different random sam-

ples with the measurement error drawn from the Laplace and normal distributions, respectively.

A comparison of two plots in the figures indicate that the bandwidth at which d(∞)
j−1,j changes

suddenly (marked by a circle, square, or star) is a good indicator of the bandwidth at which

the true distance L∞ is about to stagnate. A further investigation of the theoretical properties

of the bandwidth selection rule would be interesting, but is beyond the scope of our paper; see

also Bissantz, Dümbgen, Holzmann and Munk (2007, p.497).

6.3. Simulation results. Table 1 presents the empirical coverage probabilities of our bootstrap

confidence bands. As a benchmark, it also reports the coverage probabilities of the bootstrap

confidence bands using the true X∗. The simulated probabilities are generally close to the

nominal confidence levels. As we expected, the coverage errors tend to be smaller when the

sample size is larger or when the SNR is larger.

Figures 3 and 4 depict some typical examples for the true cdf (CDF, FX∗), deconvolution cdf

estimate (ECDF, F̃X∗), and uniform confidence bands (CB), when the latent true distribution is

standard normal and the measurement errors are drawn from Laplace and normal distributions.

They show that the uniform confidence bands perform reasonably well even for small sample
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Figure 6.1. L∞ and d∞j−1,j distances under Laplace error
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Figure 6.2. L∞ and d∞j−1,j distances under Normal error

size n = 100 and the widths of the bands shrink substantially as the sample size increases

from n = 100 to n = 500. They also show that the confidence bands with Laplace error gets

narrower than those with Normal error as the sample size gets larger. This is consistent with

our asymptotic theory since the convergence rates under Laplace and Normal errors are of

polynomial and logarithmic order, respectively.

7. Real data example

7.1. Data description. In this section, we apply the stochastic dominance test to the Korea

Household Income and Expenditure Survey data to investigate welfare changes of different pop-

ulation sub-groups between 2006 and 2012. We use the data because the OECD report (2008)

shows that, among OECD countries, Korea has the most significant variations in within-age

group inequality and, compared to the inequality within the working age group, the relative in-

equality within the retirement age group is the worst. The data fit into our framework because

it is well known that survey data are inherently affected by various sources of measurement

errors; see Deaton (1997) and Bound, Brown and Mathiowetz (2000) for potential sources of
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Level n
Laplace Error Normal Error

True X∗ SNR=1 SNR=2 SNR=3 True X* SNR=1 SNR=2 SNR=3
0.80 100 0.803 0.771 0.832 0.829 0.792 0.745 0.769 0.817

250 0.791 0.773 0.816 0.819 0.788 0.685 0.780 0.819
500 0.812 0.791 0.812 0.833 0.790 0.664 0.780 0.805
1000 0.793 0.794 0.800 0.802 0.797 0.638 0.764 0.803

0.90 100 0.897 0.871 0.909 0.924 0.881 0.848 0.875 0.915
250 0.899 0.868 0.909 0.907 0.903 0.796 0.872 0.920
500 0.906 0.873 0.906 0.919 0.885 0.800 0.882 0.903
1000 0.892 0.881 0.895 0.903 0.910 0.775 0.873 0.899

0.95 100 0.948 0.922 0.958 0.962 0.939 0.911 0.938 0.951
250 0.953 0.918 0.956 0.950 0.952 0.864 0.925 0.955
500 0.956 0.923 0.958 0.957 0.936 0.867 0.940 0.948
1000 0.947 0.929 0.945 0.961 0.951 0.858 0.925 0.946

Table 1. Simulated uniform coverage probabilities for FX∗ under Laplace and
Normal errors.
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Figure 6.3. Uniform confidence bands under Laplace (left) and Normal (right)
errors with n = 100
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Figure 6.4. Uniform confidence bands under Laplace (left) and Normal (right)
errors with n = 500

measurement errors in household-based survey data. The survey reports incomes from various

sources and consumption of goods and services for each household. We first compute the real
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Year Age Sample Size Mean S.D.
2006 25-45 12045 1,650 910

45-65 8512 1,575 1,034
60+ 4605 1,047 862
65+ 3250 968 823
70+ 2050 944 823

2012 25-45 8722 1,800 910
45-65 7653 1,814 1,106
60+ 5166 1,105 934
65+ 3700 974 879
70+ 2439 891 857

Table 2. Descriptive Statistics (Income unit: 1,000 won)

household disposable income by adding all incomes, public pension, social benefits and trans-

fers, minus tax, public pension premium and social security fees, after adjusting for inflation

using the 2010 consumer price index. We then obtain the individualized data by adjusting the

total household disposable income using the square-root equivalization scale, which is a common

practice to approximate individual welfare.

Table 2 shows the descriptive statistics for the data. It shows that average real incomes of

individuals in all age group except those over 70 have increased from 2006 to 2012. Standard

deviations of all incomes have also slightly increased over the same period. The results are

consistent with the finding of OECD (2008). However, unless the income distributions are

normal, comparison of only the first two moments is not sufficient to draw a conclusion on

the uniform ordering of nonparametric income distributions that does not depend on a specific

social welfare function. This motivates the use of a stochastic dominance criterion (see, e.g.,

Levy, 2016, and Whang, 2018).

7.2. Results. We consider two different null hypotheses for each age group: (i) The 2006 income

distribution first-order stochastically dominates that the 2012 income distribution (abbreviated

to 06 FSD 12) (ii) The 2012 income distribution first-order stochastically dominates the 2006

income distribution (abbreviated to 12 FSD 06). As a benchmark test, we consider the Bar-

rett and Donald (2003, BD)’s test based on the observed incomes, neglecting the presence of

measurement errors. We choose the bandwidth as in our simulation experiments and assume

Laplace and normal measurement errors. The variance of measurement errors is determined so

that the signal-to-noise ratio (SNR) is 1,2, or 3.6

6In practice, the error variance is generally not identified without repeated measurements or extraneous infor-
mation. However, in the case of the CPS income survey data in the U.S., Bound and Krueger (1991) mentioned
that “the error variance represents 27.6% of the total variance in CPS earnings for men and 8.9% for women.”
According to their remark, the signal-to-ratios (SNRs) are 0.9 for men and 2.35 for women. Since the SNR for
our data might be different from those of the CPS data, the latter SNR values cannot be directly applied to our
test. Instead, we opt for reporting the test results using SNRs in a “reasonable” range.
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Age Null Hypothesis BD Laplace Error Normal Error
SNR=1 SNR=2 SNR=3 SNR=1 SNR=2 SNR=3

25-45 06 FSD 12 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 FSD 06 1.000 1.000 0.997 1.000 0.999 1.000 1.000

45-65 06 FSD 12 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 FSD 06 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60+ 06 FSD 12 0.000 0.001 0.036 0.027 0.000 0.000 0.000
12 FSD 06 0.039 0.995 0.002 0.001 0.369 0.309 0.233

65+ 06 FSD 12 0.353 0.302 0.410 0.645 0.089 0.180 0.217
12 FSD 06 0.000 0.349 0.000 0.000 0.040 0.021 0.017

70+ 06 FSD 12 0.928 0.967 0.534 0.952 0.404 0.664 0.654
12 FSD 06 0.000 0.002 0.000 0.000 0.000 0.000 0.000

Table 3. Bootstrap P-values from BD and our tests

Table 3 reports the bootstrap p-values of the tests. The BD test implies that, for age groups

25-45 and 45-65, the 2012 income significantly dominates the 2006 income and, for age group

60+, there appears to be no dominance relationship (i.e. the two distributions cross), while for

age group 70+ the 2006 income dominates the 2012 income. Similar results hold when we apply

our test assuming Laplace measurement errors with relatively large SNR (=2, 3). However, when

the SNR is small (SNR=1), or the error distribution is normal, our test shows that, for age group

60+, there is a significant evidence that the 2012 income dominates the 2006 income. Similarly,

for age group 65+, the test results vary across different SNRs. This confirms that the presence

of measurement errors in the observed data might lead to different conclusions on the stochastic

dominance relationship of the underlying true distributions. Without additional information, it

is hard to draw a definite conclusion on the stochastic dominance relationship, but we believe

that our results can serve as a pilot study for a more systematic future investigation of the

dynamics of the income distributions when they are contaminated with measurement errors.
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Appendix A. Proofs of theorems

Notation: Hereafter, let P# and E# be the conditional probability and expectation under

the bootstrap distribution given {Xi}ni=1, respectively. Also, denote

L̄(u) = 1
π

∫ 1

0

sin(ωu)
ω

K ft(ω)
f ft
ε (ω/h)I{|ω| ≥ hω0}dω,

Gn(t) = r(h)
∫

L̄
(
t− a
h

)
fX(a)1/2dW (a),

pε(Gn) = sup
x
P

{∣∣∣∣∣sup
t∈T
Gn(t)− x

∣∣∣∣∣ ≤ ε
}
,

where W is a (two-sided) Wiener process on R, fX is the pdf of X, and

r(h) =

 hβ−
1
2 under Assumption OS

1/ς(h) under Assumption SS
,

with ς(h) defined in eq. (2.12) of the paper. Note that analogous to K̄ (defined in Assumptions

OS (ii) and SS (ii)), L̄ is considered as a trimmed version of L. Due to the trimming, properties

of the Fourier transform guarantee L̄ ∈ L2(R) for each h under the assumption f ft
ε 6= 0, and this

guarantees existence of the stochastic integral in the definition of Gn.

Also, for any a ∈ (0, 1), let ca denote the constant such that
√
nhβ−

1
2 ca is the (1 − a)-th

quantile of supt∈T |Gn(t)|.

A.1. Proof of Theorem 1. Since the proof is similar, we only present the proof for the ordinary

smooth case. Define

D̂#
n (t) =

√
nhβ−1/2{F̂#

X∗(t)− F̂X∗(t)}, D̃#
n (t) =

√
nhβ−1/2{F̃#

X∗(t)− F̃X∗(t)}.

We first show that there exist c, C > 0 such that

P#
{

sup
t∈T
|D̃#

n (t)− D̂#
n (t)| ≥ Cn−c

}
= op(1). (A.1)

By Lemma 2, it is enough for (A.1) to guarantee that there exist c, C > 0 satisfying

P#
{
√
nhβ−1/2 sup

t∈T
|F̃#
X∗(t)− F̂

#
X∗(t)| ≥ Cn

−c
}

= op(1).
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Let f̂ ft#
X (ω) = N−1∑

i,j e
iωX#

i,j be the bootstrap counterpart of the empirical characteristic

function f̂ ft
X(ω) = N−1∑

i,j e
iωXi,j , ξ = (f ft

ε )2, and ξ̂ = (f̂ ft
ε )2. Note that

F̃#
X∗(t)− F̂

#
X∗(t) = 1

2π

∫ 1/h

−1/h

Im
{
e−iωt

{
f̂ ft#
X (ω)− f̂ ft

X(ω)
}}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

+ 1
2π

∫ 1/h

−1/h

Im{e−iωtf̂ ft
X(ω)}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

= C1n(t) + C2n(t).

The second term C2n(t) equals to F̃X∗(t)− F̂X∗(t) whose bound is given in Lemma 2. Thus, we

only need to consider the first term C1n(t). By expanding the expectations, it can be shown

E#
[∫ 1/h

ω0
ω−a|f̂ ft#

X (ω)− f̂ ft
X(ω)|2dω

]
= Op((nh1−a)−1),

for all a < 1, and analogous arguments as in the proof of Lemma 2 yield supt∈T |C1n(t)| =

Op#((nh3β)−1) with probability approaching one. Therefore, by paralleling the arguments in

the proof of Lemma 2, we obtain (A.1).

We now proceed by verifying the conditions in the proof of Theorem 3. Lemmas 2 and 6

ensure existence of a sequence εn = O(n−c) with some c > 0 such that

P

{
sup
t∈T

∣∣∣√nhβ−1/2{F̃X(t)− FX(t)} − Gn(t)
∣∣∣ > εn

}
= op(1). (A.2)

Furthermore by Lemma 7, combined with (A.1), we have that

P#
{

sup
t∈T

∣∣∣√nhβ−1/2{F̃#
X∗(t)− F̃X∗(t)} − G̃n(t)

∣∣∣ > εn

}
= op(1). (A.3)

Therefore, by (A.2) and (A.3), the conclusion follows by paralleling the arguments in the proof

of Theorem 3.

A.2. Proof of Theorem 2. Since the proof is similar, we only present the proof for the ordinary

smooth case. Define F̄AX∗(t) = 1
2−

1
m

∑m
i=1

1
2
∑2
j=1 LA

(
t−Xi,j
h

)
, F̄A#

X∗ (t) = 1
2−

1
m

∑m
i=1

1
2
∑2
j=1 LA

(
t−X#

i,j

h

)
,

and

ĎA#
n (t) =

√
mhβ−1/2{F̌A#

X∗ (t)− F̌AX∗(t)}, D̄A#
n (t) =

√
mhβ−1/2{F̄A#

X∗ (t)− F̄AX∗(t)}.

We first show that there exist c, C > 0 such that

P#
{

sup
t∈T
|D̄A#

n (t)− ĎA#
n (t)| ≥ Cn−c

}
= op(1). (A.4)
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By Lemma 3, it is enough for (A.4) to guarantee that there exist c, C > 0 satisfying

P#
{
√
mhβ−1/2 sup

t∈T
|F̄A#
X∗ (t)− F̌A#

X∗ (t)| ≥ Cn−c
}

= op(1).

Let f̂ ft#
X,m(ω) = m−1∑m

i=1
1
2
∑2
j=1 e

iωX#
i,j be the bootstrap counterpart of the empirical charac-

teristic function f̂ ft
X,m(ω) = m−1∑m

i=1
1
2
∑2
j=1 e

iωXi,j . Note that

F̄A#
X∗ (t)− F̌A#

X∗ (t) = 1
2π

∫ 1/h

−1/h

Im
{
e−iωt

{
f̂ ft#
X,m(ω)− f̂ ft

X,m(ω)
}}

−ω
{f̌ ft
ε (ω)−1 − f ft

ε (ω)−1}K ft(hω)dω

+ 1
2π

∫ 1/h

−1/h

Im{e−iωtf̂ ft
X,m(ω)}

−ω
{f̌ ft
ε (ω)−1 − f ft

ε (ω)−1}K ft(hω)dω

= CA1n(t) + CA2n(t).

Then the bootstrap version of Lemma 3 implies supt∈T |CA2n(t)| = op#(n−c) for some c > 0. By

expanding the expectations, it can be shown

E#
[∫ 1/h

ω0
ω−a|f̂ ft#

X,m(ω)− f̂ ft
X,m(ω)|2dω

]
= Op((mh1−a)−1),

for all a < 1, and analogous arguments as in the proof of Lemma 3 yield supt∈T |CA1n(t)| =

Op#((mh3β)−1) with probability approaching one. Therefore, by paralleling the arguments in

the proof of Lemma 3, we obtain (A.4).

The rest of the proof is similar as that of Theorem 1: verify the conditions in the proof of

Theorem 3 by replacing L with LA, and note that LA(u) =
∫ u
−∞K(v)dv in view of the results

from Dattner, Goldenshluger and Juditsky (2011).

A.3. Proof of Theorem 3. We only prove the statement under Assumption OS (i.e., the

ordinary smooth case). The statement under Assumption SS is shown by a similar argument

using Lemmas 9-11.

First, we prove

P
{√

nhβ−
1
2 c̃α >

√
nhβ−

1
2 cα+δ1n − ε1n

}
≥ 1− δ2n, (A.5)

for some ε1n, δ1n, δ2n = O(n−c) with c > 0. Lemma 7 implies that with probability greater than

1− δ2n,

1− α = P#
{
√
nhβ−

1
2 sup
t∈T
|F̃#
X∗(t)− F̃X∗(t)| ≤

√
nhβ−

1
2 c̃α

}

≤ P#
{

sup
t∈T
|G̃n(t)| ≤

√
nhβ−

1
2 c̃α + ε1n

}
+ δ1n,

for some ε1n, δ1n, δ2n = O(n−c) with c > 0, where G̃n has the same distribution as Gn under P#.

Since
√
nhβ−

1
2 ca is also the (1− a)-th quantile of supt∈T |G̃n(t)| under P#, the above inequality
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implies

P#
{

sup
t∈T
|G̃n(t)| ≤

√
nhβ−

1
2 cα+δ1n

}
≤ P#

{
sup
t∈T
|G̃n(t)| ≤

√
nhβ−

1
2 c̃α + ε1n

}
,

with probability greater than 1− δ2n. Thus, we obtain (A.5).

The main result is thus obtained from the following sequence of inequalities

P{Tn ≤ c̃α} ≥ P

{
sup
t∈T
|Gn(t)| ≤

√
nhβ−

1
2 c̃α − εn

}
− δn

≥ P

{
sup
t∈T
|Gn(t)| ≤

√
nhβ−

1
2 cα+δ1n − ε1n − εn

}
− δn − δ2n

≥ P

{
sup
t∈T
|Gn(t)| ≤

√
nhβ−

1
2 cα+δ1n

}
− 2pε̄n(Gn)− δn − δ2n

= 1− α− δ1n − 2pε̄n(Gn)− δn − δ2n

≥ 1− α− δ1n −Mε̄n

√
log(1/h)− δn − δ2n,

where the first inequality follows from Lemma 6, the second inequality follows from (A.5), the

third inequality follows from the definitions of ε̄n = ε1n + εn and pε(Gn), along with the fact

Gn and −Gn have the same distribution (which ensures pε(|Gn|) ≤ 2pε(Gn)), the equality follows

from the definition that
√
nhβ−

1
2 cα+δ1n is the (1−α− δ1n)-th quantile of supt∈T |Gn(t)|, and the

last inequality follows from Lemma 8. Therefore, letting δ3n = δ1n +Mε̄n
√

log(1/h) + δn + δ2n,

we have

P{Tn ≤ c̃α} ≥ 1− α− δ3n.

Since δn, δ1n, δ2n, ε̄n are all positive sequences of order O(n−a) with some a > 0 and
√

log(1/h)

is a log-rate, we obtain (4.2).

A.4. Proof of Theorem 5. We only prove the theorem under Assumption OS (i.e., the ordinary

smooth case). The proof under Assumption SS follows by a similar argument using Lemmas

9-11.

We make the following preliminary observations. First, by the techniques employed in Lemmas

6-8, we can show7

sup
t∈H
|f̃X∗(t)− fX∗(t)| = Op(n−c). (A.6)

Next by Dattner, Reiß and Trabs (2016, Proposition 2.1),
∥∥∥f̃X∗∥∥∥1

< ∞ and
∫∞
−∞ f̃X∗(t)dt = 1

under Assumption C. Thus, we have F̃X∗(t) =
∫ t
−∞ f̃X∗(v)dv or equivalently F̃ ′X∗(t) = f̃X∗(t).

The latter ensures F̃X∗ is continuous.

7An analogous result applies for the super smooth case by Lemmas 9-11 with the rate replaced by Op((logn)−c)
for some c > 1 under the assumption γ > λ and an MSE optimal bandwidth choice.
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We now show that8

sup
u∈[u1,u2]

|Q̃(u)−Q(u)| = op(n−c1), (A.7)

for some c1 > 0. By Hall and Lahiri (2008, Theorem 3.7), Q̃(u) converges to Q(u) for each

u ∈ [u1, u2]. Now Qn(u) is monotone at each n by construction while Q(u) is continuous

by Assumption Q (i). Hence we can modify the proof of the Glivenko-Cantelli theorem (see,

Billingsley, 1995, p. 233), to strengthen the pointwise consistency to a uniform one, i.e.,

sup
u∈[u1,u2]

|Q̃(u)−Q(u)| = op(1), (A.8)

(see also, Bassett and Koenker, 1986, Theorem 3.1). As F̂X∗ is continuous, it follows that

F̃X∗(Q̃(u)) = u for all 0 < u < 1. Consequently,

F̃X∗(Q̃(u)) = FX∗(Q(u)) = FX∗(Q̃(u))− fX∗(Q̄(u))(Q̃(u)−Q(u)),

for some Q̄(u) such that |Q̄(u)−Q(u)| ≤ |Q̃(u)−Q(u)|, and we obtain

sup
u∈[u1,u2]

|Q̃(u)−Q(u)| ≤
(

inf
u∈[u1,u2]

|fX∗(Q̄(u))|
)−1

sup
u∈[u1,u2]

|F̃X∗(Q̃(u))− FX∗(Q̃(u))|

By (A.8) and Assumption Q (i) (infx∈H fX∗(x) > 0), we can verify infu∈[u1,u2] |fX∗(Q̄(u))| > 0

with probability approaching one. Furthermore, we have

sup
u∈[u1,u2]

|F̃X∗(Q̃(u))− FX∗(Q̃(u))| ≤ n−
1
2h−β+ 1

2 sup
t∈H
|Gn(t)|+ op(1) = Op

(( log(1/h)
nh2β−1

)1/2)
,

where the inequality follows from Lemma 6 after employing the fact {Q̃(u) : u ∈ [u1, u2]} ⊂ H

with probability approaching one due to Assumption Q (i) and (A.8). The equality follows from

E[supt∈H |Gn(t)|] = O(
√

log(1/h)) (by the proof of Lemma 8). Combining these results, we

obtain (A.7) under Assumptions OS (iii) and B (ii).

We now proceed to the main part of the proof. Noting that Q̃(u)−Q(u) = fX∗(Q̄(u))−1{F̃X∗(Q̃(u))−

FX∗(Q̃(u))}, we have

P

{
Q̃(u)− c̃α

f̃X∗(Q̃(u))
≤ Q(u) ≤ Q̃(u) + c̃α

f̃X∗(Q̃(u))
for all u ∈ [u1, u2]

}

= P

{
sup

u∈[u1,u2]
|f̃X∗(Q̃(u)){Q̃(u)−Q(u)}| ≤ c̃α

}
≥ P

{
sup
t∈H
|F̃X∗(t)− FX∗(t)| ≤ c̃α(1−∆n)

}
− o(1),

where ∆n = supu∈[u1,u2]

∣∣∣ f̃X∗ (Q̃(u))−fX∗ (Q̄(u))
f̃X∗ (Q̃(u))

∣∣∣ and the inequality follows from the fact

P
{
{Q̃(u) : u ∈ [u1, u2]} ⊂ H

}
→ 1 by Assumption Q (i) and (A.7). Also note that ∆n =

Op(n−c) by Assumption Q (i)-(ii), (A.6), and (A.7). We now have the following sequence of

8For the super smooth case, we can employ similar arguments to show that supu∈[u1,u2] |Q̃(u) − Q(u)| =
op((logn)−c1 ) for some c1 > 1.
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inequalities

P

{
sup
t∈H
|F̃X∗(t)− FX∗(t)| ≤ c̃α(1−∆n)

}
≥ P

{
sup
t∈H
|Gn(t)| ≤

√
nhβ−

1
2 c̃α(1−∆n)− εn

}
− δn

≥ P

{
sup
t∈H
|Gn(t)| ≤

(√
nhβ−

1
2 cα+δ1n − ε1n

)
(1−∆n)− εn

}
− δn − δ2n

≥ P

{
sup
t∈H
|Gn(t)| ≤

√
nhβ−

1
2 cα+δ1n

}
− 2pε̄n(Gn)− δn − δ2n ≥ 1− α− δ1n − δn − δ2n − 2pε̄n(Gn),

where the first inequality follows from Lemma 6, the second inequality can be derived by Lemma

7 and a similar argument in the proof of Theorem 1, the third inequality follows from the

definitions of ε̄n = εn + ε1n(1 −∆n) +
√
nhβ−

1
2 cα+δ1n∆n and the concentration function. Note

that Lemma 8 implies pε̄n(Gn) ≤ Cε̄n
√

logn. Recalling that
√
nhβ−

1
2 cα+δ1n is the (α + δ1n)-th

quantile of supt∈H |Gn(t)|, by Chernozhukov, Chetverikov and Kato (2014, Lemma B1),

√
nhβ−

1
2 cα+δ1n ≤ E

[
sup
t∈H
|Gn(t)|

]
+
√

2| log(α+ δ1n)|.

Since E[supt∈H |Gn(t)|] = O(
√

log(1/h)), this implies
√
nhβ−

1
2 cα+δ1n = O(

√
logn) under As-

sumptions OS (iii) and B (ii). By the above and the rates of εn, ε1n, it follows pε̄n(Gn) = Op(n−c2)

for some c2 > 0. Furthermore, by Lemmas 6 and 7, δn, δ1n, and δ2n are also O(n−c3) for some

c3 > 0. Combining these results, the conclusion follows.

A.5. Proof of Theorem 6. We shall assume for simplicity that fε = fδ, and consequently that

the bandwidth choices for both estimators are the same. We only prove for the case of ordinary

smooth error density as the proof for super-smooth density follows by the same arguments.

Assume that the smoothness parameter in the former case is β. Let

GDn,m(t) = hβ−1/2
{∫

L̄
(
t− a
h

)
fX(a)1/2dW1(a)−

√
n

m

∫
L̄
(
t− a
h

)
fY (a)1/2dW2(a)

}
,

whereW1 andW2 are two independent (two-sided) Wiener processes on R (for fε 6= fδ or unequal

bandwidths, the L̄ functions in the above integrals would also be different). Also define

Ψn,m(t) = {F̃X∗(t)− FX∗(t)} − {F̃Y ∗(t)− FY ∗(t)},

Ψ#
n,m(t) = {F̃#

X∗(t)− F̃X∗(t)} − {F̃
#
Y ∗(t)− F̃Y ∗(t)}.

A.5.1. Proof of (i). Since the samples {Xi}ni=1 and {Yi}mi=1 are independent of each other, by the

arguments of Lemmas (6)-(8), we can show the following: For some sequences εn, δn = O(n−c),

P

{
sup
t∈T

∣∣∣√nhβ−1/2Ψn,m(t)− GDn,m(t)
∣∣∣ > εn

}
< δn. (A.9)
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Furthermore with probability greater than 1−δ2n, δ2n = O(n−c), there exist sequences ε1n, δ1n =

O(n−c) such that

P#
{

sup
t∈T

∣∣∣√nhβ−1/2Ψ#
n,m(t)− G̃D#

n,m(t)
∣∣∣ > ε1n

}
< δ1n, (A.10)

where G̃D#
n,m is a tight Gaussian process with the same distribution as GDn,m under P#. Finally it

also holds that

pεn(GDn,m) ≤Mεn

√
log(1/h), (A.11)

for any sequence εn = O(n−c) and some M <∞. Now

P
{
Dn,m ≤ ĉDα

}
≥ P

{
sup
t∈T

Ψn,m(t)− sup
t
{FX∗(t)− FY ∗(t)} ≤ ĉDα

}
≥ P

{
sup
t∈T

Ψn,m(t) ≤ ĉDα

}
,

where the last equality follows from supt{FX∗(t) − FY ∗(t)} ≤ 0 under H0. Using equations

(A.9)-(A.11), by paralleling the arguments in the proof of Theorem 1, we can show that

P

{
sup
t∈T

Ψn,m(t) ≤ ĉDα

}
≥ 1− α− %n,m.

Hence the claim follows immediately.

A.5.2. Proof of (ii). It is enough to show that ρn,m does not depend on P ∈ P0. To this end, it is

enough to show uniform validity of equations (A.9)-(A.11). Since these equations are essentially

two-sample counterparts of Lemmas (6)-(8), it suffices to check uniform validity of the latter.

Note that for Lemma (6), uniformity of the bias term follows by the argument in Hall and

Lahiri (2008, Theorem 3.2) using the uniform version of the Sobolev condition (i.e. the constants

MX and MY do not depend on (FX∗ , FY ∗)). For the stochastic term, the constants appearing

in the KMT coupling in the proof of Lemma (6) are universal, and constants and sequences in

other parts do not depend on P ∈ P0. Thus, δn in Lemma (6) does not depend on P ∈ P0.

Similarly, uniformity of Lemma (7) is also verified.

For Lemma (8), it is enough to guarantee that σn(t) is bounded away from zero and above by

universal constants that do not depend on P ∈ P0. This is guaranteed by the assumption that

fX and fY are bounded away from zero and above by universal constants that do not depend

on P ∈ P0.

A.5.3. Proof of (iii). Let cDa be a constant such that
√
nhβ−1/2cDa is the (1 − a)-th quantile of

supt∈T GDn,m(t). Using equation (A.10) and mirroring the arguments in the proof of Theorem 1,

we have that

P
{√

nhβ−1/2ĉDα <
√
nhβ−1/2cDα−δ1n + ε1n

}
≥ 1− δ2n. (A.12)
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Under H1, there exists t∗ ∈ T such that µ = FX∗(t∗)− FY ∗(t∗) > 0. Then we obtain

P{Dn.m > ĉDα } ≥ P
{√

nhβ−1/2Dn,m >
√
nhβ−1/2cDα−δ1n + ε1n

}
− δ2n

≥ P
{
GDn,m(t∗) >

√
nhβ−1/2cDα−δ1n −

√
nhβ−

1
2µ+ ε1n + εn

}
− δ2n − δn,

for some εn, δn = O(n−c′) with some c′ > 0, where the first inequality follows from (A.12) and

the second inequality follows from (A.9). By analogous arguments as in the proof of Theo-

rem 5, we can show
√
nhβ−1/2cDα−δ1n

= O(
√

log(1/h)). However under Assumption OS (iii),
√
nhβ−1/2 log−1/2(1/h)µ→ +∞; hence the conclusion follows immediately.

Appendix B. Lemmas

Hereafter we use the following notation. By the Ito isometry, the variance function of the

Gaussian process Gn can be shown to be

σn(t) = hr2(h)
∫

L̄2(a)fX(t− ha)da.

Let σ̄n = supt σn(t) and σn = inft σn(t). Assumption C (i) (inft∈T fX(t) > c > 0) guarantees

that σn > 0 for all n ∈ N.

Also, define the variance sub-metric dn(s, t) = V ar(Gn(s)− Gn(t)) on T .

B.1. Lemma for Theorem 1.

Lemma 2.

(i): Under Assumptions C and SS, it holds that for some c > 0,

√
nhβ−1/2 sup

t∈T
|F̃X∗(t)− F̂X∗(t)| = op(n−c).

(ii): Under Assumptions C and SS, it holds that for some c > 0,
√
n

ς(h) sup
t∈T
|F̃X∗(t)− F̂X∗(t)| = op(n−c).

Proof. Since the proof is similar, we only present the proof for (i). For simplicity, we restrict

attention to the case of Ni = 2. For more general situations where Ni is arbitrary but bounded

above by C, the proof follows by similar arguments after accounting for the dependence structure

in f̂ ft
ε .

We first make the following preliminary observations. Note that F̃X∗(t) can be alternatively

written as

F̃X∗(t) = 1
2π

∫ 1/h

−1/h

Im{eiωtf̂ ft
X(ω)}

−ω
K ft(hω)
f̂ ft
ε (ω)

dω. (B.1)
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A similar expression holds for F̂X∗ . Recall that ξ = (f ft
ε )2 and ξ̂ = (f̂ ft

ε )2 are the population and

empirical Fourier transforms of Xi,j1 −Xi,j2 . We note the following properties for ξ̂

E

[∫ h−1

ω0
ω−a|ξ̂(ω)− ξ(ω)|2dω

]
=


n−1h−(1−a) if a < 1

n−1 if a > 1

n−1 log(1/h) if a = 1

(B.2)

sup
|ω|≤h−1

|ξ/ξ̂| ≤ 1 + op(1). (B.3)

The results in (B.2) can be shown by expanding the expectations. To show (B.3), we use

Yukich (1987, Theorem 6.3) which assures that under Assumption B (i), sup|ω|≤h−1 |ξ̂ − ξ| =

Op(
√

logn/n) for h = O(n−c) with some c > 0. Combined with Assumption B (ii), this implies

{min|ω|≤h−1 |ξ̂|}−1 = Op(h−2β). Thus we obtain

sup
|ω|≤h−1

|ξ/ξ̂| ≤ 1 + sup
|ω|≤h−1

|(ξ̂ − ξ)/ξ̂| = 1 +Op

(( logn
nh4β

)1/2
)

= 1 + op(1),

thereby proving (B.3).

Pick any η ∈ (1/2, γ − β). Under Assumptions C (iii) and OS (i), it can be verified that

∫ 1/h

−1/h

∣∣∣∣∣ωηf ft
X∗(ω)

ξ(ω)1/2

∣∣∣∣∣
2

dω = O(1). (B.4)

We shall also make frequent use of the following algebraic inequality:

|ξ̂1/2 − ξ1/2| ≤ ξ−1/2|ξ̂ − ξ|. (B.5)

We now proceed to the main part of the proof. By (B.1), we can expand

F̃X∗(t)− F̂X∗(t) = 1
π

∫ ω0

0

Im{e−iωtf̂ ft
X(ω)}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

+ 1
π

∫ 1/h

ω0

Im{e−iωtf̂ ft
X(ω)}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

= B1n(t) +B2n(t).

For the term B1n(t), using (B.5), we have

|B1n(t)| ≤ 1
π

∫ ω0

0

∣∣∣∣∣ Im{e−iωtf̂ ft
X(ω)}

−ω

∣∣∣∣∣
∣∣∣∣∣ξ(ω)
ξ̂(ω)

∣∣∣∣∣
1/2 |ξ̂(ω)− ξ(ω)|

ξ(ω)3/2 dω.

By the fact sup|ω|≤ω0 |ξ̂ − ξ| = Op(n−1/2) and (B.3), we obtain

sup
t∈T
|B1n(t)| = Op(n−1/2) sup

t∈T
I(t),

35



where

I(t) =
∫ ω0

0

∣∣∣∣∣ Im{e−iωtf̂ ft
X(ω)}

−ω

∣∣∣∣∣ dω
≤

∫ ω0

0

∣∣∣∣sin(ωt)
ω

Re{f̂ ft
X(ω)}

∣∣∣∣ dω +
∫ ω0

0

∣∣∣∣cos(ωt)
ω

Im{f̂ ft
X(ω)}

∣∣∣∣ dω
≤

∫ ω0

0

∣∣∣∣sin(ωt)
ω

∣∣∣∣ dω +
∫ ω0

0

∣∣∣∣∣ Im{f̂ ft
X(ω)}
ω

∣∣∣∣∣ dω
= I1(t) + I2.

Since T is a compact set, it holds supt∈T I1(t) <∞. By the definition of f̂ ft
X , the random variable

I2 can be bounded as

I2 ≤
1
N

∑
i,j

∫ ω0

0

∣∣∣∣sin(ωXi,j)
ω

∣∣∣∣ dω ≡ 1
N

∑
i,j

Ti,j .

Since

E[Ti,j ] = E

∫ ω0|Xi,j |

0

∣∣∣∣sin(t)
t

∣∣∣∣ dt ≤ C1 + E[log |Xi,j |] <∞

for some C1 > 0, it holds I2 = Op(1). Combining these results, we obtain supt∈T |B1n(t)| =

Op(n−1/2).

For the term B2n(t), we further expand

B2n(t) = − 1
π

∫ 1/h

ω0

Im{e−iωtf ft
X(ω)}

−ωξ(ω)1/2 {ξ̂(ω)1/2 − ξ(ω)1/2}K ft(hω)ξ(ω)1/2

ξ̂(ω)1/2
dω

+ 1
π

∫ 1/h

ω0

Im
{
e−iωt{f̂ ft

X(ω)− f ft
X(ω)}

}
−ω

{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

= B21n(t) +B22n(t).

For the term B21n(t), we have

sup
t∈T
|B21n(t)| ≤ 1

π

∫ 1/h

ω0

∣∣∣∣∣ωηf ft
X∗(ω)

ξ(ω)1/2

∣∣∣∣∣
∣∣∣∣∣ ξ̂(ω)− ξ(ω)
ω1+ηξ(ω)1/2

∣∣∣∣∣
∣∣∣∣∣ξ(ω)
ξ̂(ω)

∣∣∣∣∣
1/2

dω

≤ C2(1 + op(1))

∫ 1/h

ω0

∣∣∣∣∣ωηf ft
X∗(ω)

ξ(ω)1/2

∣∣∣∣∣
2

dω

1/2(∫ 1/h

ω0
ω2(β−η−1)|ξ̂(ω)− ξ(ω)|2dω

)1/2

= O(n−1/2h(η−β+1/2)∧0),

for some C2 > 0, where the first inequality follows from the fact |Im{e−iωtf ft
X(ω)}| ≤ |f ft

X(ω)| =

|f ft
X∗(ω)|ξ(ω)1/2 and (B.5), the second inequality follows from (B.3) and Assumption OS (i), and

the equality follows from (B.2) and (B.4).
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Now consider the term B22n(t). Applying (B.5) and Assumption OS (i), we can write

sup
t∈T
|B22n(t)| ≤ 1

π

∫ 1/h

ω0
|f̂ ft
X(ω)− f ft

X(ω)||ξ̂(ω)− ξ(ω)||ξ(ω)/ξ̂(ω)|1/2 1
ωξ(ω)3/2dω

≤ 1
c3π

∫ 1/h

ω0
|f̂ ft
X(ω)− f ft

X(ω)||ξ̂(ω)− ξ(ω)||ξ(ω)/ξ̂(ω)|1/2ω3β−1dω,

for some c > 0. As in (B.4), it can be shown after expanding the expectation that

E

[∫ 1/h

ω0
ω−a|f̂ ft

X(ω)− f ft
X(ω)|2dω

]
= O((nh1−a)−1),

for all a < 1. Thus, by (B.3) and (B.4), it follows

sup
t∈T
|B22n(t)| ≤ 1 + op(1)

π

∫ 1/h

ω0
ω3β−1|f̂ ft

X(ω)− f ft
X(ω)||ξ̂(ω)− ξ(ω)|dω

= 1 + op(1)
π

(∫ 1/h

ω0
ω3β−1|f̂ ft

X(ω)− f ft
X(ω)|2dω

)1/2(∫ 1/h

ω0
ω3β−1|ξ̂(ω)− ξ(ω)|2dω

)1/2

= O((nh3β)−1).

Combining these results, we obtain

√
nhβ−1/2 sup

t∈T
|F̃X∗(t)− F̂X∗(t)| = Op

(
hη∧(β−1/2) + 1√

nh2β+1/2

)
= op(n−c)

for some c > 0, under Assumptions OS (iii), B (ii) and the condition η > 1/2. �

B.2. Lemma for Theorem 2. An analog of Lemma 2 is obtained as follows.

Lemma 3.

(i): Suppose that Assumptions C (i)-(ii) C’, OS (i), and OS’ hold true, andmnζ0−1h2β−2γ−1 →

0 as n→∞ for some 0 < ζ0 < 1. Then for some c > 0,

√
mhβ−1/2 sup

t∈T
|F̌AX∗(t)− F̄AX∗(t)| = op(n−c).

(ii): Suppose that Assumptions C (i)-(ii) C’, SS (i), and SS’ hold true, and

mnζ1−1(logn)2r+1(log logn)2 → 0 as n→∞ for some 0 < ζ1 < 1. Then for some c > 0,
√
m

ς(h) sup
t∈T
|F̌AX∗(t)− F̄AX∗(t)| = op(n−c).

Proof. Proof of (i). We prepare the following lemma.

Lemma 4. Suppose that Assumptions C (i)-(ii), C’ (i), OS (i), and OS’ (i) and (iv) hold true.

Then for any a ≤ 2γ + 2,

E

[∫ 1/h

ω0
ω−a|f̌ ft

ε (ω)− f ft
ε (ω)|2dω

]
= O

( 1
nh2γ+2−a

)
.

37



Proof. [Proof of Lemma 4] From a similar argument in the proof of Comte and Kappus (2015,

Theorem 3.2), we have∫ 1/h

ω0
ω−aE[|f̌ ft

ε (ω)− f ft
ε (ω)|2]dω

≤ C0
n

(∫ 1/h

ω0
ω−a

(∫ ω

0

1
|f ft
X∗(u)|2

du

)
dω

)

+ C0
np−1

(∫ 1/h

ω0
ω−a

1
|f ft
X∗(ω)|2

(∫ ω

0

1
|f ft
X∗(u)|2

du

)(∫ ω

0

1
|ψ(0, u)|2du

)p−1
dω

)

+C0
n2

(∫ 1/h

ω0
ω−a

1
|f ft
X∗(ω)|2

(∫ ω

0

1
|ψ(0, u)|2du

)
dω

)

+C0
np

(∫ 1/h

ω0
ω−a

1
|f ft
X∗(ω)|4

(∫ ω

0

1
|ψ(0, u)|2du

)p
dω

)
+ C0
n2

∫ 1/h

ω0
ω−a

1
|f ft
X∗(ω)|4

dω,

where C0 > 0 is a constant which does not depend on n. Thus, Assumptions OS (i) and OS’ (i)

and (iv) imply the conclusion. �

Let f̌ ft
X(ω) = m−1∑m

i=1 2−1∑2
j=1 e

iωXi.j be the empirical characteristic function. We follow

the proof of Lemma 2. Decompose

F̌AX∗(t)− F̄AX∗(t) = 1
π

∫ ω0

0

1
ω

Im
[
e−iωtf̌ ft

X(ω){f̌ ft
ε (ω)−1 − f ft

ε (ω)−1}
]
K ft(hω)dω

+ 1
π

∫ h−1

ω0

1
ω

Im
[
e−iωtf̌ ft

X(ω){f̌ ft
ε (ω)−1 − f ft

ε (ω)−1}
]
K ft(hω)dω

= B′1n(t) +B′2n(t).

For the term B′1n(t), we have

|B′1n(t)| ≤ C1

∫ ω0

0

∣∣∣∣ 1ω Im
[
e−iωtf̌ ft

X(ω)
]∣∣∣∣
∣∣∣∣∣f ft
ε (ω)
f̌ ft
ε (ω)

∣∣∣∣∣
∣∣∣∣∣f ft
ε (ω)− f̌ ft

ε (ω)
f ft
ε (ω)2

∣∣∣∣∣ dω
for some C1 > 0. Note that sup|ω|≤ω0 |f̌

ft
ε (ω) − f ft

ε (ω)| = Op(n−1/2) by Lemma 1 (i). Also by

Lemma 1 (i) and Assumption OS’ (v),

sup
|ω|≤h−1

|f ft
ε (ω)/f̌ ft

ε (ω)| ≤ 1 +
sup|ω|≤h−1 |f̌ ft

ε (ω)− f ft
ε (ω)|

inf |ω|≤h−1

{
|f ft
ε (ω)| − |f̌ ft

ε (ω)− f ft
ε (ω)|

} = 1 +Op

(
log h−1

n1/2h3β+3γ+1

)

= 1 + op(1).

Then we obtain supt∈T |B′1n(t)| = Op(n−1/2) since supt∈T I(t) = O(1).
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For the term B′2n(t), we further decompose

B′2n(t) = 1
π

∫ h−1

ω0
Im
[
e−iωtf ft

X(ω)
ωf ft

ε (ω)2
f ft
ε (ω)
f̌ ft
ε (ω)

{f ft
ε (ω)− f̌ ft

ε (ω)}
]
K ft(hω)dω

+ 1
π

∫ h−1

ω0
Im
[
e−iωt

ω
{f̌ ft
X(ω)− f ft

X(ω)}{f̌ ft
ε (ω)−1 − f ft

ε (ω)−1}
]
K ft(hω)dω

≡ B′21n(t) +B′22n(t).

For the term B′21n(t), the Cauchy-Schwarz inequality and Lemma 4 yield

sup
t∈T
|B′21n(t)| ≤ 1

π

∫ h−1

ω0

∣∣∣∣∣ωηf ft
X∗(ω)

f ft
ε (ω)

∣∣∣∣∣ ∣∣∣ω−1−η{f ft
ε (ω)− f̌ ft

ε (ω)}
∣∣∣ ∣∣∣∣∣f ft

ε (ω)
f̌ ft
ε (ω)

∣∣∣∣∣ dω
≤ C(1 + op(1))

∫ h−1

ω0

∣∣∣∣∣ωηf ft
X∗(ω)

f ft
ε (ω)

∣∣∣∣∣
2

dω

1/2(∫ h−1

ω0

∣∣∣ω−1−η{f ft
ε (ω)− f̌ ft

ε (ω)}
∣∣∣2 dω)1/2

= Op

( 1
n1/2hγ−η

)
.

For the term B′22n(t), applying Assumptions OS (i) and OS’ (i), we can write

sup
t∈T
|B′22n(t)| ≤ 1

π

∫ h−1

ω0
|f̌ ft
X(ω)− f ft

X(ω)||f ft
ε (ω)− f̌ ft

ε (ω)|
∣∣∣∣∣f ft
ε (ω)
f̌ ft
ε (ω)

∣∣∣∣∣
∣∣∣∣ 1
ωf ft

ε (ω)2

∣∣∣∣ dω
≤ C(1 + op(1))

(∫ h−1

ω0
ω2β−1|f̌ ft

X(ω)− f ft
X(ω)|2dω

)1/2(∫ h−1

ω0
ω2β−1|f ft

ε (ω)− f̌ ft
ε (ω)|2dω

)1/2

.

It can be shown after expanding the expectation that

E

[∫ 1/h

ω0
ω−a|f̌ ft

X(ω)− f ft
X(ω)|2dω

]
= O((mh1−a)−1),

for all a < 1. Thus, by Lemma 4, it follows supt∈T |B′22n(t)| = Op
(

1√
mnh2β+γ+1/2

)
.

Combining these results, we obtain

√
mhβ−1/2 sup

t∈T
|F̌AX∗(t)− F̄AX∗(t)| = Op

( √
m√

nhγ−β+1/2 + 1√
nhγ+β+1

)
= op(n−c),

for some c > 0.

Proof of (ii). We use the following lemma.

Lemma 5. Suppose that Assumptions C (i)-(ii), C’ (i), SS (i), SS’ (i) and (iii) hold true. Then

E

[∫ 1/h

ω0
ω−2λ0−1 exp

(
2ωλ

µ

)
|f̌ ft
ε (ω)− f ft

ε (ω)|2dω
]

= O

(
n−1h1+2λ0x+2λ0−[(1−λx)∨0]) exp

(
4h−λ

µx ∧ µ

))
,

E

[∫ 1/h

ω0
ω2λ0x−2λ0−1 exp

(
2ωλ

µ
− 2ωλx

µx

)
|f̌ ft
ε (ω)− f ft

ε (ω)|2dω
]

= O

(
n−1h1+2λ0−[(1−λx)∨0]) exp

(
2h−λ

µ

))
.
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Lemma 5 can be shown in the same manner as the proof of Lemma 4. Since the rest of the

proof is similar, we omit the proof of the super smooth case. �

B.3. Lemmas for Theorem 3 under Assumption OS (i)-(iii).

Lemma 6. Under Assumptions C (i)-(iv) and OS (i)-(iii), there exist sequences εn, δn = O(n−c)

for some c > 0 such that

P

{
sup
t∈T

∣∣∣√nhβ−1/2{F̃X∗(t)− FX∗(t)} − Gn(t)
∣∣∣ > εn

}
< δn.

Proof. By applying the argument in Hall and Lahiri (2008), the bias of the estimator F̃X∗

satisfies supt∈T |E[F̃X∗(t)]− FX∗(t)| = O(hγ). Thus, Assumption OS (iii) guarantees

√
nhβ−1/2 sup

t∈T
|E[F̃X∗(t)]− FX∗(t)| = o(n−ξ).

So, the bias term is negligible and it is enough to show that

P

{
sup
t∈T

∣∣∣√nhβ−1/2{F̃X∗(t)− E[F̃X∗(t)]} − Gn(t)
∣∣∣ > εn

}
< δn, (B.6)

for some εn, δn = O(n−c) with c > 0. Let FEDFX,n be the empirical distribution function by

{Xi}ni=1, αn(x) =
√
n{FEDFX,n (x)− FX(x)} be the empirical process, and

Dn(t) =
√
nhβ−1/2{F̃X∗(t)− E[F̃X∗(t)]} = hβ−1/2

∫
L
(
t− a
h

)
dαn(a).

Then (B.6) is rewritten as

P

{
sup
t∈T
|Dn(t)− Gn(t)| > εn

}
< δn, (B.7)

for some εn, δn = O(n−c) with c > 0.

First, we approximate Dn(t) by

Dn,0(t) = hβ−1/2
∫

L̄
(
t− a
h

)
dαn(a),

Note that both Dn(t) and Dn,0(t) are well defined as Lebesgue-Steltjes integrals.9 From inte-

gration by parts,

Dn(t) = hβ−3/2
∫

K
(
t− a
h

)
αn(a)da

+hβ−1/2 lim
a→∞

{
L
(
t− a
h

)
αn(a)

}
− hβ−1/2 lim

a→−∞

{
L
(
t− a
h

)
αn(a)

}
= hβ−3/2

∫
K
(
t− a
h

)
αn(a)da, (B.8)

9This is verified as follows. By the definition L(u) =
∫ u

0 K(v)dv and Assumption OS (ii), we have supu |L(u)| <∞.
Also, by L̄(u) =

∫ u
0 K̄(v)dv (follows from Fubini’s theorem) and Assumption OS (ii), we have supu |L̄(u)| < ∞.

Therefore, bounded variation of the empirical process αn guarantees that both Dn(t) and Dn,0(t) are well defined.
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for all n ∈ N, where the second equality follows from the facts lima→±∞ αn(a) = 0 and

supu |L(u)| < ∞ for each h. Since a similar expression applies for Dn,0(t), there exists C > 0

such that

Dn(t)−Dn,0(t) = hβ−1/2
∫
{K(u)− K̄(u)}αn(u− th)du ≤ Chs sup

u
|αn(u)|,

for all n large enough and t ∈ T , where the inequality follows from Assumption OS (ii). Now

by the strong approximation (Komlós, Major and Tusnády, 1975), there exists a tight Brownian

bridge B(t) = W (t)− tW (1) and universal constants C1, C2 > 0 such that

P

{
sup
u
|αn(u)| ≤ sup

u
|B(FX(u))|+ C1

logn√
n

}
≥ 1− C2

n
,

for all n ∈ N. Combining these results and using the properties of supu |B(FX(u))| (in particular,

P{supu |B(FX(u))| ≥ x} ≤ 2 exp(−2x2) for x > 0), there exists C3 > 0 such that

P

{
sup
t∈T
|Dn(t)−Dn,0(t)| > hs/2

}
≤ C3 exp(−2h−s) + C2

n
,

for all n large enough. Note that hs/2 = O(n−c1) for some c1 > 0 due to Assumption OS (iii)

(nνh→ 0). Thus, it is enough for (B.7) to show that

P

{
sup
t∈T
|Dn,0(t)− Gn(t)| > εn

}
< δn,

for some εn, δn = O(n−c) with c > 0.

Second, we approximate Dn,0(t) by

Dn,1(t) = hβ−1/2
∫

L̄
(
t− a
h

)
dB(FX(a)).

Since L̄ ∈ L2(R), this integral exists for all t ∈ R. Analogous to the integration by parts formula

in (B.8), a similar result applies for Dn,1(t) based on stochastic integration by parts using the

facts limu→±∞ L̄(u) = 0 and supa |B(FX(a))| <∞ almost surely. Thus, we have

Dn,0(t)−Dn,1(t) = hβ−3/2
∫

K̄
(
t− a
h

)
{αn(a)−B(FX(a))}da

≤ hβ−1/2 sup
a
|αn(a)−B(FX(a))|

∫
|K̄(u)|du,

for all n ∈ N, almost surely. Now by Komlós, Major and Tusnády (1975), there exist Brownian

bridge B with continuous sample paths and universal constants C4, C5 > 0 such that

P

{
sup
a∈R
|αn(a)−B(FX(a))| > C4

logn√
n

}
≤ C5

n
,
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for all n ∈ N. Combining this with Assumption OS (ii) (eq. (2.9)), there exist c2, C6 > 0 such

that

P

{
sup
t∈T
|Dn,0(t)−Dn,1(t)| > C6n

−c2

}
≤ C5

n
,

for all n large enough. Thus, it is enough for (B.7) to show that

P

{
sup
t∈T
|Dn,1(t)− Gn(t)| > εn

}
< δn,

for some εn, δn = O(n−c) with c > 0.

Third, we approximate Dn,1(t) by

Dn,2(t) = hβ−1/2
∫

L̄
(
t− a
h

)
dW (FX(a)).

By the definition B(t) = W (t)− tW (1), we have

|Dn,1(t)−Dn,2(t)| ≤ hβ−1/2|W (1)|
∣∣∣∣∫ L̄

(
t− a
h

)
fX(a)da

∣∣∣∣ , (B.9)

for all n ∈ N. Therefore, for the rate of supt∈T |Dn,1(t) −Dn,2(t)|, we need to characterize the

order of In1(t) =
∫
L̄
(
t−a
h

)
fX(a)da. By the definition of L̄ and∫ ∞

−∞
sin(ω(t− a))fX(a)da = 1

2i{e
iωtf ft

X(−ω)− e−iωtf ft
X(ω)},

an application of Fubini’s theorem assures

|In1(t)| =
∣∣∣∣∣ 1
2iπ

∫ 1/h

ω0
{eiωtf ft

X(−ω)− e−iωtf ft
X(ω)}K

ft(hω)
ωf ft

ε (ω) dω
∣∣∣∣∣

≤ 1
π

∫ 1/h

ω0
ω−1dω = O(log(1/h)).

where the inequality follows from |f ft
X | = |f ft

X∗ ||f ft
ε | ≤ |f ft

ε | and f ft
ε (ω) = f ft

ε (−ω). Substituting

this bound for In1(t) into (B.9), we obtain

P

{
sup
t∈T
|Dn,1(t)−Dn,2(t)| > Mnh

β−1/2 log(1/h)
}

= O(n−c3),

for some c3 > 0 and sequence Mn = logn. By Assumption OS (i) (β > 1/2), it holds

Mnh
β−1/2 log(1/h) = O(n−c4) for some c4 > 0. Therefore, it is enough for (B.7) to show

that

P

{
sup
t∈T
|Dn,2(t)− Gn(t)| > εn

}
< δn,

for some εn, δn = O(n−c) with c > 0. But we can see that the process Dn,2(t) has the same

finite dimensional distributions as the process Gn(t). Therefore, this trivially holds true and the

conclusion is obtained. �
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Lemma 7. Under Assumptions C (i)-(iv) and OS (i)-(iii), there exist sequences ε1n, δ1n, δ2n =

O(n−c) for some c > 0 such that with probability greater than 1− δ2n,

P#
{

sup
t∈T

∣∣∣√nhβ−1/2{F̃#
X∗(t)− F̃X∗(t)} − G̃n(t)

∣∣∣ > ε1n

}
< δ1n,

where G̃n is a tight Gaussian process with the same distribution as Gn under P#.

Proof. The proof is essentially a reformulation of that of Bissantz, Dümbgen, Holzmann and

Munk (2007, Theorem 2.1). Let α#
n (t) =

√
n{FEDF

X#,n−F
EDF
X,n (t)} denote the bootstrap empirical

process. As shown in the proof of Bissantz, Dümbgen, Holzmann and Munk (2007, eq. (21)),

based on Shorack (1982), there exist a Brownian bridge B#
n and universal constants C,C1 > 0

such that for all n ∈ N,

P#
{

sup
t∈R
|α#
n (t)−B#

n (FEDFX,n (t))| > C
logn√
n

}
≤ C1

n
,

almost surely. Now it is known that the Brownian bridge is Hölder continuous for every exponent

b ∈ (0, 1/2) almost surely. Furthermore, by Komlós, Major and Tusnády’s (1975) coupling, along

with the fact P{supt |B(FX(t))| ≥ logn} ≤ 2 exp(−2(logn)2), there exist universal constants

C2, C3 > 0 such that

P

{
sup
t∈R
|FEDFX,n (t)− FX(t)| > C2

logn√
n

}
≤ C3

n
,

for all n ∈ N, which consequently implies

P

{
sup
t∈R
|B#

n (FEDFX,n (t))−B#
n (FX(t))| > C4

logn
nb/2

}
≤ C5

n
,

for some universal constants C4, C5 > 0. Combining these results, there exist universal constants

C6, C7, C8 > 0 such that with probability greater than 1− C6/n, it holds

P#
{

sup
t∈R
|α#
n (t)−B#

n (FX(t))| > C7
logn
nb/2

}
≤ C8

n
,

for all n ∈ N. Based on this, the conclusion follows by similar arguments to the proof of Lemma

6. �

Lemma 8. Suppose that Assumptions C (i)-(iv) and OS (i)-(iii) hold true. Then for any

sequence εn = O(n−c) with c > 0, there exists a constant M > 0 such that

pεn(Gn) ≤Mεn

√
log(1/h),

for all n large enough.
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Proof. Pick any ε > 0. By Chernozhukov, Chetverikov and Kato (2015, Theorem 3) and sepa-

rability of Gn, there exists C > 0 such that

pε(Gn) ≤ Cε
{
σ−1
n E

[
sup
t∈T
|Gn(t)|

]
+
√

1 ∨ log(σn/ε)
}
,

for all n ∈ N. Thus, it is enough to show that

E

[
sup
t∈T
|Gn(t)|

]
= O(

√
log(1/h)).

Now,

d2
n(s, t) = h2β

∫ {
L̄
(
s

h
− a

)
− L̄

(
t

h
− a

)}2
fX(ha)da

by the Ito isometry. Note that L̄ is Lipschitz continuous because its derivative K̄ is uniformly

bounded on R (because hβ supu |K̄(u)| ≤ C for some C > 0 by Assumption OS (i)). Thus, it

holds

dn(s, t) ≤ C1h
−3/2|s− t|, (B.10)

for some C1 > 0 that is independent of s and t.

Let D(ε, dn) be the ε-packing number for the set T under the sub-metric dn. By (B.10),

it holds D(ε, dn) ≤ 2C1h
−3/2/ε. Pick any δ ∈ (0, 1). By van der Vaart and Wellner (1996,

Corollary 2.2.8), there exist universal constants C2, C3 > 0 such that

E

[
sup

dn(s,t)≤δ
|Gn(s)− Gn(t)|

]

≤ C2

∫ δ

0

√
logD(ε, dn)dε ≤ C2δ

√
log(2C1h−3/2) + C2

∫ δ

0

√
log(1/ε)dε ≤ C3

√
log(1/h),

for all n ∈ N. Thus, by the above and (B.10), there exists a collection of Gaussian random

variables {Gn(tj)}pni=1 with pn =
⌈

1
h3/2δ

⌉
such that

E

[
sup
t∈T
|Gn(t)|

]
≤ E

[
max

1≤j≤pn
|Gn(tj)|

]
+ C3

√
log(1/h),

for all n ∈ N. Now the properties of the maximum of Gaussian random variables yields

E

[
max

1≤j≤pn
|Gn(tj)|

]
≤ 2σ̄n

√
1 + log pn.

Combining these results, the conclusion follows. �

B.4. Lemmas for Theorem 3 under Assumption SS (i)-(iii).
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Lemma 9. Under Assumptions C (i)-(iv) and SS (i)-(iii), there exist sequences εn = O(logn)−(1+c)

and δn = O(n−c) with c > 0 such that

P

{
sup
t∈T

∣∣∣∣∣
√
n

ς(h){F̃X
∗(t)− FX∗(t)} − Gn(t)

∣∣∣∣∣ > εn

}
< δn.

Lemma 10. Under Assumptions C (i)-(iv) and SS (i)-(iii), there exist sequences ε1n, δ1n, δ2n =

O(n−c) with c > 0 such that with probability greater than 1− δ2n,

P#
{

sup
t∈T

∣∣∣∣∣
√
n

ς(h){F̃
#
X (t)− F̃X(t)} − G̃n(t)

∣∣∣∣∣ > ε1n

}
< δ1n,

where G̃n is a tight Gaussian process with the same distributions as Gn under P#.

These lemmas can be shown in the same way as Lemmas 6 and 7. The log rate of εn in

Lemma 9 is due to the bias term. Recall that under Assumption C (ii), the bias of the estimator

F̃X∗ is given by

sup
t∈T
|E[F̃X∗(t)]− FX∗(t)| = O(hγ).

Then due to Assumption SS (iii), it holds
√
nhγ/ς(h) = C(logn)−c for some c > 1.

Lemma 11. Suppose that Assumptions C (i)-(iv) and SS (i)-(iii) hold true. Then for any

sequence εn = O(logn)−c with c > 1 there exists M > 0 such that

pεn(Gn) ≤Mεn(logn)1+r,

for all n large enough and any r > 0 independent of n.

Proof. Pick any ε > 0. By Chernozhukov, Chetverikov and Kato (2015, Theorem 3) and sepa-

rability of the Gaussian process Gn, there exists C > 0 such that

pε(Gn) ≤ Cε
{
σ−1
n E

[
sup
t∈T
|Gn(t)|

]
+
√

1 ∨ log(σn/ε)
}
,

for all n ∈ N. By Lemmas 12 and 13 shown below, the following hold true:

there exist c1 > 0 such that σn ≥ c1h
λ+ν for all ν > 0 and n large enough, (B.11)

there exist C1 > 0 such that σ̄n ≤ C1 for all n large enough. (B.12)

Observe that

d2
n(s, t) = h

ς2(h)

∫ {
L̄
(
s

h
− a

)
− L̄

(
t

h
− a

)}2
fX(ha)da

by the Ito isometry. Note that L̄ is Lipschitz continuous because its derivative K̄ is uniformly

bounded on R (because
√
hς−1(h) supu |K̄(u)| ≤ C2h

−c2 for some C2, c2 > 0 by Assumption

SS (i)). Thus, it holds dn(s, t) ≤ C3h
−c2−3/2|s − t| for some C3 > 0 that is independent
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of s and t. Using (B.12), an analogous argument as in the proof of Lemma 8 shows that

E [supt∈T |Gn(t)|] = O(
√

log(1/h)). Combining this with (B.11) and Assumption SS (iii), the

conclusion follows. �

Lemma 12. Under Assumptions C (i)-(iv) and SS (i)-(iii), there exists c > 0 such that σn ≥

chλ+ν for all ν > 0 and n large enough.

Proof. We only prove the case of λ0 ≥ 0. The proof for the case of λ0 < 0 is similar. Pick any

ε > 0. By Assumption C (i), we provide a lower bound for σn via

σn = inf
t∈T

h

ς2(h)

∫
L̄2(a)fX(t− ha)da ≥ c1h

ς2(h)

∫
|a|≤hε

L̄2(a)da,

for some c1 > 0. Let

Φε(ω) = f ft
ε (ω)−1I{|ω| ≥ ω0}.

Using the fact sin(x) = x + R(x) with |R(x)| ≤ c2|x|2 for some c2 > 0, it follows that for all

|a| ≤ hε,

|L̄(a)| ≥ 1
π

∣∣∣∣a ∫ 1

0
K ft(ω)Φε

(
ω

h

)
dω

∣∣∣∣− c2
π

∣∣∣∣a ∫ 1

0
|aω|K ft(ω)Φε

(
ω

h

)
dω

∣∣∣∣ ≥ C{1−O(hε)}|aIn|,

where In =
∫ 1

0 K
ft(ω)Φε

(
ω
h

)
dω and the last inequality follows from the fact sup{|aω| : |a| ≤

hε, ω ∈ [0, 1]} = hε.

We now provide a lower bound for In. Pick any δ > 0. Observe that

h
1−λ

2 ς(h)−
1
2 |In| = exp(−1/µhλ)

hλ(r+1)+λ0

∫ 1

hω0
K ft(ω)Φε

(
ω

h

)
dω

≥ c3
exp(−1/µhλ)

hλ(r+1)

∫ 1

hω0
K ft(ω)ω−λ0 exp

(
|ω|λ

hλµ

)
dω

≥ c3
exp(−1/µhλ)

hλ(r+1)

∫ 1

δ
K ft(ω) exp

(
|ω|λ

hλµ

)
dω

= c3

∫ (1−δ)h−λ

0

K ft(1− hλv)
(hλv)r vr exp

(
|1− hλv|λ − 1

hλµ

)
dv

→ c3q
r
∫
vr exp(−λv/µ)dv > 0,

for some c3 > 0, where the first inequality follows from the fact Φε(ω) ≥ c3|ω|−λ0 exp(|ω|λ/µ), the

second inequality holds since all the terms inside the integral are positive and ω−λ0I{hω0 ≤ ω ≤

1} ≥ 1 for λ0 ≥ 0, the second equality follows from a change of variables, and the convergence
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follows from the dominated convergence theorem after noting

K ft(1− hλv)
(hλv)r vr exp

(
|1− hλv|λ − 1

hλµ

)
I{0 ≤ v ≤ (1− δ)h−λ}

≤


sup0≤t≤1{t−rK ft(1− t)}vr exp(−v/µ) if λ ≥ 1,

sup0≤t≤1{t−rK ft(1− t)}vr exp(−λv/µ) if 0 < λ < 1.

Thus, it holds h1/2ς(h)−1/2|In| > c3h
λ/2 for all n large enough.

Combining these results, there exists c > 0 such that

σn ≥ chλ
∫
|a|≤hε

|a|2da ≥ chλ+3ε,

for all n large enough, and the conclusion follows. �

Lemma 13. Under Assumptions C (i)-(iv) and SS (i)-(iii), there exists C > 0 such that σ̄n ≤ C

for all n large enough.

Proof. We only prove the case of λ0 ≥ 0. The proof for the case of λ0 < 0 is similar. Pick any

ε ∈ (0, 2−1/λ). Since fX is bounded (Assumption C (ii)), there exists C1, C2 > 0 such that

σ̄n ≤ C1
exp(−2/µhλ)
hλ(2r+1)+2λ0

∫
L̄2(a)da = C2

exp(−2/µhλ)
hλ(2r+1)+2λ0

∫ 1

hω0

∣∣∣∣∣K ft(ω)
ω

Φε

(
ω

h

)∣∣∣∣∣
2

dω

≤ C2ω
−2
0

exp(−2/µhλ)
hλ(2r+1)+2(1+λ0)

∫ 1

hω0

∣∣∣∣K ft(ω)Φε

(
ω

h

)∣∣∣∣2 dω
≤ C2ω

−2
0

exp(−2/µhλ)
hλ(2r+1)+2(1+λ0)

∫ ε

hω0

∣∣∣∣∣K ft(ω)
(
ω

h

)−(1+λ0)
exp

(
|ω|λ

hλµ

)∣∣∣∣∣
2

dω

+C2ω
−2
0

exp(−2/µhλ)
hλ(2r+1)

∫
|ω|>ε

∣∣∣∣∣K ft(ω)ω−(1+λ0) exp
(
|ω|λ

hλµ

)∣∣∣∣∣
2

dω

= T1n + T2n,

for all n large enough, where the first equality follows from Plancherel’s isometry,10 and the

second inequality follows from Φε(ω) ≤ C|ω|−λ0 exp(|ω|λ/µ). For T1n, Assumption SS (iii) and

the restriction ε ∈ (0, 2−1/λ) guarantee

T1n ≤ C3ω
−(1+λ0)
0

exp(−2/µhλ)
hλ(2r+1)+2(1+λ0)

∫ ε

hω0

∣∣∣∣∣K ft(ω) exp
(
|ω|λ

hλµ

)∣∣∣∣∣
2

dω

≤ C4
exp(−1/µhλ)
hλ(2r+1)+2(1+λ0) = O(n−c1),

10Note that L̄ is written as L̄(u) = 1
2π

∫ 1
−1

e−iωu

ω
Kft(ω)
f ft
ε (ω/h) I{|ω| ≥ ω0}dω. This integral exists due to the truncation.
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for some C3, C4, c1 > 0. For T2n, note that

T2n ≤ C5ε
−(1+λ0) exp(−2/µhλ)

hλ(2r+1)

∫
|ω|>ε

∣∣∣∣∣K ft(ω) exp
(
|ω|λ

hλµ

)∣∣∣∣∣
2

dω,

for some C5 > 0. By an analogous dominated convergence argument used in the proof of Lemma

12, we can show T2n converges to some finite constant. Combining these results, the conclusion

follows. �

Appendix C. Assumptions and proof for Theorem 4

In this appendix we prove Theorem 4, the asymptotic distribution of sn in (4.3). Basic steps

of our proof follow the recipe laid down by Bissantz, Dümbgen, Holzmann and Munk (2007).

Importantly, we impose tail conditions on f ft
ε of the form f ft

ε (ω)|ω|β → Cε as |ω| → ∞. Based

on this, we define

K(u) = 1
2πCε

∫ ∞
0

e−iωuωβK ft(ω)dω + 1
2πCε

∫ 0

−∞
e−iωu|ω|βK ft(ω)dω,

L(u) = 1
2πCε

∫ ∞
0

sin(ωu)ωβ−1K ft(ω)dω + 1
2πCε

∫ 0

−∞
sin(ωu)|ω|βω−1K ft(ω)dω. (C.1)

These are the pointwise limits of hβK(u) and hβL(u) as h→ 0 under some assumptions on f ft
ε .

In addition to Assumptions OS (i)-(iii), we impose the following conditions.

Assumption G.

(i): f ft
ε (ω)|ω|β → Cε as |ω| → ∞ for some β > 1/2.

(ii): hβ
∫
|K(u)|du < M for someM > 0 independent of h.

∫
|u|3/2

√
log(log+ |u|)|K(u)|du <

∞. For some δ > 0,
∫
|hβK̄(u)−K(u)|du = O(h1/2+δ).

(iii): limu→±∞ |L(u)
√
|u| log(log+ |u|)| = 0. For some δ1 ∈ (0, 1),

∫
|L(u)|2−δ1du < ∞.

For some δ > 0, supu |hβL̄(u/h)− L(u/h)| = O(h1/2+δ).

(iv): fX and its derivative f ′X are bounded and continuous on R such that

limx→±∞ |xfX(x) log(log+ |x|)| = 0. Also, supx |f ′X(x)fX(x)−1/2
√
|x| log(log+ |x|)| <∞.

Furthermore it holds∫
|f ′X(x)fX(x)−1/2

√
|x| log(log+ |x|)|dx <∞.

These conditions are generalizations and simplifications of the ones in Bissantz, Dümb-

gen, Holzmann and Munk (2007). Assumption G (i) is stronger than the usual assumption

f ft
ε (ω)|ω|β < Cε as |ω| → ∞ but is required for explicit derivation of the limiting distribution.

Assumption G (ii) contains conditions for the deconvolution kernel K. The first condition

ensures that K is L1-integrable. A sufficient condition for this is that 1/f ft
ε (ω) is a polynomial

function in ω. Indeed in this case it can be shown from the properties of the Fourier transform
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that |K(u)| ∼ |u|−q as |u| → ∞ under some conditions on f ft
ε . For instance, the choice r > 2 for

K assures |K(u)| ∼ |u|−2 under the assumption

∫ ∣∣∣∣∣
{
K ft(ω)
f ft
ε (ω/h)

}′′∣∣∣∣∣ dω = O(h−β).

A similar condition is given in, for example, Bissantz, Dümbgen, Holzmann and Munk (2007,

eq. (13)). K in (C.1) is the limit of K̄ as h → ∞ obtained by Assumption G (i). Recall that

by Assumption OS (ii), hβ−
1
2
∫
|K(u) − K̄(u)|du = O(hs). Additionally, it can be shown from

the previous assumptions and properties of the Fourier transform of ωβK ft(ω) that
∫
|hβK(u)−

K(u)|du < ∞. To obtain the rate h1/2+δ for the latter, we need some additional conditions

on the decay of f ft
ε . Denote R(ω) = f ft

ε (ω)ωβ − Cε. Then a sufficient condition for the third

condition in Assumption G (ii) is that R(ω) ∼ ω−1/2−δ as |ω| → ∞.

Assumption G (iii) contains conditions on the integrated kernel function L. On the first two

conditions in Assumption G (iii), we can in fact show the stronger statement that for all the

commonly used kernel functions, L(u) ∼ |u|−β∧1 as u→ ±∞. Regarding the third condition in

Assumption G (iii), note that we can expand

hβL̄
(
u

h

)
− L

(
u

h

)
= hβ

πCε

∫ 1/h

ω1

sin(ωu)
ω

K ft(hω) R(ω)
ψft(ω)dω −

hβ

πCε

∫ ω1

0
sin(ωu)ωβ−1K ft(hω)dω.

Standard arguments show that this is of the order h1/2+δ under the assumption R(ω) ∼ ω−1/2−δ

as |ω| → ∞.

Assumption G (iv) provides conditions on the decay rates of the pdf fX and its derivative

f ′X . Similar assumptions are adopted in the literature (e.g., Bickel and Rosenblatt, 1973).

Based on these conditions, we obtain Theorem 4 with

B =
∫
L(a)2da, bn = (−2 log h)1/2 + (−2 log h)−1/2 log

(∫
{L′(a)}2da

4πB

)
, (C.2)

Furthermore, if we consider the simple hypothesis

H0 : FX∗(t) = F0(t) for t ∈ T ,

for some F0, a test statistic for H0 is t0n = supt∈T |fX(t)−1/2{F̂X∗(t) − F0(t)}|. Consider the

sequence of local alternatives

H1n : FX∗(t) = F0(t) + γnη(t) for t ∈ T ,

where η(t) is a continuous function and γn =
√
nhβ−1/2(2 log(1/h))1/2. By an analogous argu-

ment, we can obtain
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P
{

(−2 log h)1/2(B−1/2t0n − bn) ≤ c
}
→ exp(−s(η) exp(−c)),

for all c ∈ R, where s(η) =
∫ 1

0 exp((BfX∗(a))−1/2η(a)) + exp(−(BfX∗(a))−1/2η(a))da.

C.1. Proof of Theorem 4. We show that

sup
t∈T

∣∣∣∣√nh2β−1fX(t)−1{F̃X∗(t)− FX∗(t)} − Yn(t)
∣∣∣∣ = op((− log(h))−1/2), (C.3)

where Yn = h−1/2 ∫ L ( t−ah ) dW (a) is a Gaussian process. Once we obtain (C.3), the conclusion

follows by applying the arguments of Bickel and Rosenblatt (1973, Theorem A1). The rate

op((− log(h))−1/2) is required because later we scale by (− log(h))1/2 to obtain the limiting

distribution as in Bickel and Rosenblatt (1973).

First, as in the proof of Lemma 6, the bias term in Qn(t) is negligible and we can restrict

attention to the mean zero process

Dn(t) = Qn(t)− E[Qn(t)] = hβ−1/2
∫

L
(
t− a
h

)
dαn(a),

where αn(a) =
√
n{FEDFX,n (a) − FX(a)} is the empirical process, and FEDFX,n is the empirical

distribution function by {Xi}ni=1. We approximate Dn(t) by

Dn,1(t) = hβ−1/2
∫

L̄
(
t− a
h

)
dW (FX(a)).

Indeed the arguments in the proof of Lemma 6 allow us to show

sup
t∈T
|Dn(t)−Dn,1(t)| = Op((nh)−1/2 logn)).

Also, Dn,1(t) has the same finite dimensional distribution as

Dn,2(t) = hβ−1/2
∫

L̄
(
t− a
h

)
fX(a)1/2dW (a).

Next, we approximate Dn,2(t) by

Dn,3(t) = h−3/2
∫
K
(
t− a
h

)
fX(a)1/2W (a)da.

To this end, note that for any h > 0,

lim
a→±∞

K
(
t− a
h

)
fX(a)1/2W (a) ≤ sup

u
|K(u)| lim

a→±∞
|afX(a) log(log+ |a|)|1/2 = 0,

where the inequality follows from the law of the iterated logarithm for the Wiener process and

the equality follows from the facts supu |K(u)| = O(h−β−1) and Assumption G (iv). Thus, using
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stochastic integration by parts, we can write

Dn,2(t) = hβ−1/2
∫ {

fX(t− hu)1/2K̄(u) + hf ′X(t− hu)fX(t− hu)−1/2L̄(u)
}
W (t− hu)du.

and obtain

|Dn,2(t)−Dn,3(t)| ≤ h−1/2
∫
{hβK̄(u)−K(u)}fX(t− hu)1/2W (t− hu)du

+h1/2
∫
hβL̄(u)f ′X(t− hu)fX(t− hu)−1/2W (t− hu)du

= Tn,4(t) + Tn,5(t)

Now by the law of the iterated logarithm and Assumption G (ii) and (iv), it follows supt∈T |Tn,4(t)| =

Op(hδ). For the term Tn,5(t),

|Tn,5(t)| ≤ h−1/2 sup
u
|hβL̄(u/h)− L(u/h)|

∫
|f ′X(t− z)fX(t− z)−1/2W (t− z)|dz

+h1/2
∣∣∣∣∫ L(u)f ′X(t− hu)fX(t− hu)−1/2W (t− hu)du

∣∣∣∣
= Tn,51(t) + Tn,52(t).

Using Assumption G (iii)-(iv), an application of the law of the iterated logarithm proves supt∈T Tn,51(t) =

O(hβ). Next, for the term Tn,52(t), Hölder’s inequality and the law of the iterated logarithm

imply

Tn,52(t) ≤ hδ1/(4−2δ1) ‖L(u)‖2−δ1

∥∥∥∥f ′X(u)fX(u)−1/2
√
|u| log(log+ |u|)

∥∥∥∥
2+δ1/(1−δ1)

.

By this expression and Assumption G (iii)-(iv), we are able to show supt∈T |Tn,52(t)| = op((− log(h))−1/2).

Combining these results, the claim supt∈T |Dn,2(t)−Dn,3(t)| = op((− log(h))−1/2) follows.

Third, we approximate the process fX(t)−1/2Dn,3(t) with the process

Dn,4(t) = h−3/2
∫
K
(
t− a
h

)
W (a)da.

Note that

fX(t)−1/2Dn,3(t)−Dn,4(t) = h−1/2
∫
{fX(t)−1/2fX(t− hu)1/2 − 1}K(u)W (t− hu)du.

By the law of the iterated logarithm and Assumption G (ii) and (iv), it follows

sup
t∈T
|fX(t)−1/2Dn,3(t)−Dn,4(t)| = Op(h1/2).

Fourth, let

Dn,5(t) = h−1/2
∫
L
(
t− a
h

)
dW (a).

51



By stochastic integration by parts formula and Assumption G (ii),

Dn,4(t)−Dn,5(t) =
{

lim
a→∞

L

(
t− a
h

)
W (a)

}
−
{

lim
a→−∞

L

(
t− a
h

)
W (a)

}
= 0,

for each h, which implies that Dn,4(t) = Dn,5(t) for all t ∈ T . Since Dn,5(t) has the same finite

dimensional distributions as the process Yn, the claim in (C.3) follows.
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