6 research outputs found
Measurement of radiation distribution on the absorber in an asymmetric CPC collector
A method to estimate the annual collected energy and the annual average optical efficiency factor is suggested. The radiation distribution on the absorber of an asymmetric CPC collector with a flat bi-facial absorber is measured for three different absorber mounting angles using a photo diode. The annual optical efficiency factors and a relative measure of the annual collected energy are determined for collectors with the absorber fin thickness 0.5 and 1 mm, and for a collector with a teflon convection suppression film mounted around the absorber. With the local optical efficiency factors and the annual incident solar energy distribution considered, the analysis indicates that the energy gain for a mounting angle of 20 is higher than for a collector with 65 absorber mounting angle. The annual collected energy is increased with 6-8% if the absorber fin thickness is increased from 0.5 to 1 mm. The annual average optical efficiency factor is relatively independent of the absorber mounting angle. It was found to be 0.87-0.88 for a collector with a 0.5 mm thick absorber fin and 0.92 for a collector with a 1 mm thick absorber fin or for a collector with 0.5 mm thick absorber fin with a teflon convection suppression film added. The low annual average optical efficiency factor is not caused by the uneven irradiance distribution but by the relatively high U-L-values. (C) 2003 Elsevier Ltd. All rights reserved
The impact of optical and thermal properties on the performance of flat plate solar collectors
The impact of the optical properties on the annual performance of flat plate collectors in a Swedish climate has been estimated with the MINSUN program. The collector parameters were determined with a theoretically based calculation program verified from laboratory measurements. The importance of changes in solar absorptance and thermal emittance of the absorber, the addition of a teflon film or a teflon honeycomb, antireflection treatment of the, cover glazing and combinations of these improvements were investigated. The results show that several improvements can be achieved for solar thermal absorbers. A combined increase in absorptance from 0.95 to 0.97 and a decrease in emittance from 0.10 to 0.05 increase the annual performance with 6.7% at 50 degreesC operating temperature. The increase in performance by installing a teflon film as second glazing was estimated to 5.6% at 50 degreesC. If instead a teflon honeycomb is installed, a twice as high performance increase is obtained, 12.1 %. Antireflection treatment of the cover glazing increases the annual output with 6.5% at 50 degreesC. A combination of absorber improvements together with a teflon honeycomb and an antireflection treated glazing results in a total increase of 24.6% at 50 degreesC. Including external booster reflectors increases the expected annual output at 50 degreesC to 19.9-29.4% depending on reflector material. (C) 2002 Elsevier Science Ltd. All rights reserved