166 research outputs found
(B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer
Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms
Optimizing CRISPR/Cas9 Editing of Repetitive Single Nucleotide Variants
CRISPR/Cas9, base editors and prime editors comprise the contemporary genome editing toolbox. Many studies have optimized the use of CRISPR/Cas9, as the original CRISPR genome editing system, in substituting single nucleotides by homology directed repair (HDR), although this remains challenging. Studies describing modifications that improve editing efficiency fall short of isolating clonal cell lines or have not been validated for challenging loci or cell models. We present data from 95 transfections using a colony forming and an immortalized cell line comparing the effect on editing efficiency of donor template modifications, concentration of components, HDR enhancing agents and cold shock. We found that in silico predictions of guide RNA efficiency correlated poorly withactivity in cells. Using NGS and ddPCR we detected editing efficiencies of 5-12% in the transfected populations which fell to 1% on clonal cell line isolation. Our data demonstrate the variability of CRISPR efficiency by cell model, target locus and other factors. Successful genome editing requires a comparison of systems and modifications to develop the optimal protocol for the cell model and locus. We describe the steps in this process in a flowchart for those embarking on genome editing using any system and incorporate validated HDR-boosting modifications for those using CRISPR/Cas9
Multifocal osteoclast-rich tumour in Paget bone disease and conventional giant cell tumour, two genetically distinct entities? Sequencing from a single case
Paget disease of bone is a metabolic disorder with a strong genetic component, characterised by pronounced disorganised bone remodelling. Complications of this disease include an increased risk of developing bone neoplasms. Here, we describe the case of a 60-year-old Italian patient with Paget disease of bone, presenting with an osteoclast-rich tumour. Our analysis of this entity, based on the clinical, morphological and genetic data (whole exome sequencing), suggests that osteoclast-rich lesions in Paget disease of bone are genetically distinct from classical giant cell tumour of bone. We discuss the importance of differentiating these osteoclast-rich lesions
Brown Tumors Belong to the Spectrum of KRAS-driven Neoplasms
Brown tumors are rare and generally self-limiting mass lesions of bone occurring in the context of hyperparathyroidism. Although commonly regarded as endocrine-driven tumor-like lesions, we detected pathogenic hotspot KRAS mutations in 10/16 brown tumors (62%) with similar frequencies found in cases affecting the peripheral and axial skeleton. Pathogenic mutations in other driver genes of the RAS-MAPK pathway were not identified. Our findings suggest brown tumors to represent true neoplasms driven by the activation of the RAS-MAPK signaling pathway. The frequent regression of brown tumors after normalization of hyperparathyroidism points to a second hit mediated by endocrine stimulation to be required for tumor development. Our findings underline the pathogenic relation of brown tumors to nonossifying fibroma and giant cell granuloma of the jaws which both appear histologically similar to brown tumors and are also driven by RAS-MAPK signaling pathway activation
A molecular map of mesenchymal tumors
BACKGROUND: Bone and soft tissue tumors represent a diverse group of neoplasms thought to derive from cells of the mesenchyme or neural crest. Histological diagnosis is challenging due to the poor or heterogenous differentiation of many tumors, resulting in uncertainty over prognosis and appropriate therapy. RESULTS: We have undertaken a broad and comprehensive study of the gene expression profile of 96 tumors with representatives of all mesenchymal tissues, including several problem diagnostic groups. Using machine learning methods adapted to this problem we identify molecular fingerprints for most tumors, which are pathognomonic (decisive) and biologically revealing. CONCLUSION: We demonstrate the utility of gene expression profiles and machine learning for a complex clinical problem, and identify putative origins for certain mesenchymal tumors
Subclassification of epithelioid sarcoma with potential therapeutic impact
Epithelioid sarcoma is a rare and aggressive mesenchymal tumour, the genetic hallmark of which is the loss of expression of SMARCB1, a key member of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodelling complex. Hampered by its rarity, epithelioid sarcoma has received little research attention and therapeutic options for this disease remain limited. SMARCB1-deficient tumours also include malignant rhabdoid tumour, atypical teratoid and rhabdoid tumour, epithelioid malignant peripheral nerve sheath tumour, and poorly differentiated chordoma. Histologically, it can be challenging to distinguish epithelioid sarcoma from malignant rhabdoid tumour and other SMARCB1-deficient tumours, whereas methylation profiling shows that they represent distinct entities and facilitates their classification. Methylation studies on SMARCB1-deficient tumours, although not including epithelioid sarcomas, reported methylation subgroups which resulted in new clinical stratification and therapeutic approaches. In addition, emerging evidence indicates that immunotherapy, including immune checkpoint inhibitors, represents a promising therapeutic strategy for SMARCB1-deficient tumours. Here, we show that some epithelioid sarcomas share methylation patterns of malignant rhabdoid tumours indicating that this could help to distinguish these entities and guide treatment. Using gene expression data, we also showed that the immune environment of epithelioid sarcoma is characterised by a predominance of CD8+ lymphocytes and M2 macrophages. These findings have potential implications for the management of patients with epithelioid sarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland
The Effect of iCook 4-H, a Childhood Obesity Prevention Program, on Blood Pressure and Quality of Life in Youth and Adults: A Randomized Control Trial
Objective: Obesity increases the risk of developing hypertension and from population-based samples with estimations that of 2-4% of the U.S. pediatric population has hypertension, which may affect quality of life. This study examined the effects of an obesity prevention program on blood pressure and quality of life in youth and adult participants. Methods: A multi-state research team recruited treatment dyads (youth and their adult meal preparer) to participate in a 12-week randomized control trial and follow-up through 24 months. The treatment group received a cooking and physical activity intervention, followed by booster sessions and mailed newsletters over the remaining two-year period. The control group received no intervention. Resting blood pressure and health related quality of life (HRQOL) surveys were administered at 0,4,12 and 24 months. Results: 228 dyads were recruited (n=77 control and n=151 for treatment). Youth and adult systolic blood pressure (SBP) increased over the 24 months (p=0.003 and p=0.03, respectively) with no differences between groups. From baseline to 24 months both control and treatment youths’ physical and psychological HRQOL increased (p=0.01 and p=0.002, respectively). At 0 and 4 months, youth and adult SBP was positively correlated (r=0.24, p=0.003 and r=0.33, p\u3c0.001, respectively). In the treatment group, there was an inverse association between adult SBP and youth psychological HRQOL at 4 months (r=-0.20, p=0.04), and a similar trend in adult SBP and youth physical HRQOL at 4 months in the treatment group (r=-0.19, p=0.05). Conclusion: A youth-adult dyad obesity prevention program consisting of culinary, mealtime and physical activity education, elicited improvements in HRQOL in youth participants
Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2
Isocitrate dehydrogenase (IDH) genes 1 and 2 are frequently mutated in acute myeloid leukaemia (AML), low-grade glioma, cholangiocarcinoma (CC) and chondrosarcoma (CS). For AML, low-grade glioma and CC, mutant IDH status is associated with a DNA hypermethylation phenotype, implicating altered epigenome dynamics in the aetiology of these cancers. Here we show that the IDH variants in CS are also associated with a hypermethylation phenotype and display increased production of the oncometabolite 2-hydroxyglutarate, supporting the role of mutant IDH-produced 2-hydroxyglutarate as an inhibitor of TET-mediated DNA demethylation. Meta-analysis of the acute myeloid leukaemia, low-grade glioma, cholangiocarcinoma and CS methylation data identifies cancer-specific effectors within the retinoic acid receptor activation pathway among the hypermethylated targets. By analysing sequence motifs surrounding hypermethylated sites across the four cancer types, and using chromatin immunoprecipitation and western blotting, we identify the transcription factor EBF1 (early B-cell factor 1) as an interaction partner for TET2, suggesting a sequence-specific mechanism for regulating DNA methylation
Osteosarcoma: Novel prognostic biomarkers using circulating and cell-free tumour DNA
AIM: Osteosarcoma (OS) is the most common primary bone tumour in children and adolescents. Circulating free (cfDNA) and circulating tumour DNA (ctDNA) are promising biomarkers for disease surveillance and prognostication in several cancer types; however, few such studies are reported for OS. The purpose of this study was to discover and validate methylation-based biomarkers to detect plasma ctDNA in patients with OS and explore their utility as prognostic markers. METHODS: Candidate CpG markers were selected through analysis of methylation array data for OS, non-OS tumours and germline samples. Candidates were validated in two independent OS datasets (n = 162, n = 107) and the four top-performing markers were selected. Methylation-specific digital droplet PCR (ddPCR) assays were designed and experimentally validated in OS tumour samples (n = 20) and control plasma samples. Finally, ddPCR assays were applied to pre-operative plasma and where available post-operative plasma from 72 patients with OS, and findings correlated with outcome. RESULTS: Custom ddPCR assays detected ctDNA in 69% and 40% of pre-operative plasma samples (n = 72), based on thresholds of one or two positive markers respectively. ctDNA was detected in 5/17 (29%) post-operative plasma samples from patients, which in four cases were associated with or preceded disease relapse. Both pre-operative cfDNA levels and ctDNA detection independently correlated with overall survival (p = 0.0015 and p = 0.0096, respectively). CONCLUSION: Our findings illustrate the potential of mutation-independent methylation-based ctDNA assays for OS. This study lays the foundation for multi-institutional collaborative studies to explore the utility of plasma-derived biomarkers in the management of OS
Antioxidant-mediated inhibition of the heat shock response leads to apoptosis
AbstractWe examined the hypothesis that reactive oxygen species (ROS) contribute to the induction of heat shock proteins (hsps) during stress response. Exposure of HL-60 human myelocytic cells to 42°C induced both hsp72 and hsp27. In the presence of the antioxidant molecules pyrrolidine dithiocarbamate or 1,10-phenanthroline induction of hsp72 and 27 was significantly decreased, while N-acetyl-l-cysteine caused a slight reduction. Prevention of hsp induction was associated with heat sensitization and increased caspase activity, indicating that the cells were undergoing apoptosis. These data suggest that ROS contribute to the induction of hsps and furthermore, that hsp induction and apoptosis are mutually exclusive events within the same cell
- …